Special Issue:
TOPICAL REVIEW — III-nitride optoelectronic materials and devices
|
TOPICAL REVIEW—III-nitride optoelectronic materials and devices |
Prev
Next
|
|
|
Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes |
Wang Lai (汪莱), Yang Di (杨迪), Hao Zhi-Biao (郝智彪), Luo Yi (罗毅) |
Tsinghua National Laboratory on Information Science and Technology and Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal–organic–vapor phase epitaxy (MOVPE), which is challenge due to the lack of 、itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
|
Received: 20 January 2015
Revised: 06 February 2015
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
78.67.Hc
|
(Quantum dots)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB632804, 2011CB301900, and 2012CB3155605), the National Natural Science Foundation of China (Grant Nos. 61176015, 61210014, 51002085, 61321004, 61307024, and 61176059), and the High Technology Research and Development Program of China (Grant No. 2012AA050601). |
Corresponding Authors:
Wang Lai
E-mail: wanglai@tsinghua.edu.cn
|
About author: 73.40.Kp; 78.55.Cr; 78.60.Fi; 78.67.Hc |
Cite this article:
Wang Lai (汪莱), Yang Di (杨迪), Hao Zhi-Biao (郝智彪), Luo Yi (罗毅) Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes 2015 Chin. Phys. B 24 067303
|
[1] |
Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
|
[2] |
Amano H, Kito M, Hiramatsu K and Akasaki I 1989 Jpn. J. Appl. Phys. 28 L2112
|
[3] |
Nakamura S 1991 Jpn. J. Appl. Phys. 30 L1705
|
[4] |
Nakamura S, Mukai T, Senoh M and Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139
|
[5] |
Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
|
[6] |
Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop'ev P S, Alferov Z I, Richter U, Werner P, Gösele U and Heydenreich J 1994 Electron. Lett. 30 1416
|
[7] |
Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamoglu A 2000 Science 290 2282
|
[8] |
Yuan Z L, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Science 295 102
|
[9] |
Zhang M, Banerjee A, Lee C S, Hinckley J M and Bhattacharya P 2011 Appl. Phys. Lett. 98 221104
|
[10] |
Frost T, Banerjee A, Sun K, Chuang S L and Bhattacharya P 2013 IEEE J. Quantum Electron. 49 923
|
[11] |
Jarjour A F, Taylor R A, Oliver R A, Kappers M J, Humphreys C J and Tahraoui A 2007 Appl. Phys. Lett. 91 052101
|
[12] |
Zhao W, Wang L, Wang J X, Hao Z B and Luo Y 2011 J. Crystal Growth 327 202
|
[13] |
People R and Bean J C 1985 Appl. Phys. Lett. 47 322
|
[14] |
Nakajima K 1999 Jpn. J. Appl. Phys. 38 1875
|
[15] |
Pereira S 2006 Thin Solid Films 515 164
|
[16] |
Leyer M, Stellmach J, Meissner Ch, Pristovsek M and Kneissl M 2008 J. Crystal Growth 310 4913
|
[17] |
Pristovsek M, Kadir A, Meissner C, Schwaner T, Leyer M, Stellmach J, Kneissl M, Ivaldi F and Kret S 2013 J. Crystal Growth 372 65
|
[18] |
Zhao W, Wang L, Wang J X, Lv W B, Hao Z B and Luo Y 2012 Phys. Status Solidi A 1-5, 201127368 327
|
[19] |
Chichibu S F, Abare A C, Mack M P, Minsky M S, Deguchi T, Cohen D, Kozodoy P, Fleischer S B, Keller S, Speck J S, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Wada K, Sota T and Nakamura S 1999 Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 59 298
|
[20] |
Caro M A, Schulz S and O'Reilly E P 2013 Phys. Rev. B 88 21410321
|
[21] |
Park S H, Hong W P and Kim J J 2012 J. Appl. Phys. 112 123107
|
[22] |
Schulz S and O'Reill E P 2011 Appl. Phys. Lett. 99 223106
|
[23] |
Williams D P, Andreev A D, O'Reilly E P and Faux D A 2005 Phys. Rev. B 72 23531823
|
[24] |
Schulz S and O'Reilly E P 2010 Phys. Rev. B 82 33411
|
[25] |
Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Chen J F, Tsai T Y, Xue Q K and Chen S C 2003 J. Crystal Growth 249 144
|
[26] |
Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Xue Q K, Lai W C and Chiou Y Z 2003 Mater. Lett. 57 4218
|
[27] |
Bai J, Wang Q, Wang T, Cullis A G and Parbrook P J 2009 J. Appl. Phys. 105 053505
|
[28] |
Bayram C and Razeghi M 2009 Appl. Phys. A 96 403
|
[29] |
Zhao W, Wang L, Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2011 Jpn. J. Appl. Phys. 50 065601
|
[30] |
Wang L, Zhao W, Lv W B, Wang L, Hao Z B and Luo Y 2011 Phys. Status Solidi C 1-4 201100303
|
[31] |
Tessarek C, Figge S, Aschenbrenner T, Bley S, Rosenauer A, Seyfried M, Kalden J, Sebald K, Gutowski J and Hommel D 2011 Phys. Rev. B 83 115316
|
[32] |
Tessarek C, Figge S and Hommel D 2014 J. Phys. D: Appl. Phys. 47 055108
|
[33] |
Park I K and Park S J 2011 Appl. Phys. Express 4 042102
|
[34] |
Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2012 Nanoscale Research Letters 7 617
|
[35] |
Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 128101
|
[36] |
Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B and Luo Y 2014 Appl. Phys. Express 7 025203
|
[37] |
Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13
|
[38] |
Li H J, Li P P, Kang J J, Li Z, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Express 6 102103
|
[39] |
Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
|
[40] |
Wang X H, Guo L W, Jia H Q, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2009 Appl. Phys. Lett. 94 111913
|
[41] |
Jia H Q, Guo L W, Wang W X and Chen H 2009 Adv. Mater. 21 4641
|
[42] |
Yang D, Wang L, Lv W B, Hao Z B and Luo Y 2015 Superlattices and Microstructures 82 26
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|