Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067303    DOI: 10.1088/1674-1056/24/6/067303
Special Issue: TOPICAL REVIEW — III-nitride optoelectronic materials and devices
TOPICAL REVIEW—III-nitride optoelectronic materials and devices Prev   Next  

Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes

Wang Lai (汪莱), Yang Di (杨迪), Hao Zhi-Biao (郝智彪), Luo Yi (罗毅)
Tsinghua National Laboratory on Information Science and Technology and Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  

InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal–organic–vapor phase epitaxy (MOVPE), which is challenge due to the lack of 、itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.

Keywords:  InGaN      quantum dot      light emitting diode      MOVPE  
Received:  20 January 2015      Revised:  06 February 2015      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.55.Cr (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
  78.67.Hc (Quantum dots)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2013CB632804, 2011CB301900, and 2012CB3155605), the National Natural Science Foundation of China (Grant Nos. 61176015, 61210014, 51002085, 61321004, 61307024, and 61176059), and the High Technology Research and Development Program of China (Grant No. 2012AA050601).

Corresponding Authors:  Wang Lai     E-mail:  wanglai@tsinghua.edu.cn
About author:  73.40.Kp; 78.55.Cr; 78.60.Fi; 78.67.Hc

Cite this article: 

Wang Lai (汪莱), Yang Di (杨迪), Hao Zhi-Biao (郝智彪), Luo Yi (罗毅) Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes 2015 Chin. Phys. B 24 067303

[1] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
[2] Amano H, Kito M, Hiramatsu K and Akasaki I 1989 Jpn. J. Appl. Phys. 28 L2112
[3] Nakamura S 1991 Jpn. J. Appl. Phys. 30 L1705
[4] Nakamura S, Mukai T, Senoh M and Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139
[5] Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
[6] Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop'ev P S, Alferov Z I, Richter U, Werner P, Gösele U and Heydenreich J 1994 Electron. Lett. 30 1416
[7] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamoglu A 2000 Science 290 2282
[8] Yuan Z L, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Science 295 102
[9] Zhang M, Banerjee A, Lee C S, Hinckley J M and Bhattacharya P 2011 Appl. Phys. Lett. 98 221104
[10] Frost T, Banerjee A, Sun K, Chuang S L and Bhattacharya P 2013 IEEE J. Quantum Electron. 49 923
[11] Jarjour A F, Taylor R A, Oliver R A, Kappers M J, Humphreys C J and Tahraoui A 2007 Appl. Phys. Lett. 91 052101
[12] Zhao W, Wang L, Wang J X, Hao Z B and Luo Y 2011 J. Crystal Growth 327 202
[13] People R and Bean J C 1985 Appl. Phys. Lett. 47 322
[14] Nakajima K 1999 Jpn. J. Appl. Phys. 38 1875
[15] Pereira S 2006 Thin Solid Films 515 164
[16] Leyer M, Stellmach J, Meissner Ch, Pristovsek M and Kneissl M 2008 J. Crystal Growth 310 4913
[17] Pristovsek M, Kadir A, Meissner C, Schwaner T, Leyer M, Stellmach J, Kneissl M, Ivaldi F and Kret S 2013 J. Crystal Growth 372 65
[18] Zhao W, Wang L, Wang J X, Lv W B, Hao Z B and Luo Y 2012 Phys. Status Solidi A 1-5, 201127368 327
[19] Chichibu S F, Abare A C, Mack M P, Minsky M S, Deguchi T, Cohen D, Kozodoy P, Fleischer S B, Keller S, Speck J S, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Wada K, Sota T and Nakamura S 1999 Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 59 298
[20] Caro M A, Schulz S and O'Reilly E P 2013 Phys. Rev. B 88 21410321
[21] Park S H, Hong W P and Kim J J 2012 J. Appl. Phys. 112 123107
[22] Schulz S and O'Reill E P 2011 Appl. Phys. Lett. 99 223106
[23] Williams D P, Andreev A D, O'Reilly E P and Faux D A 2005 Phys. Rev. B 72 23531823
[24] Schulz S and O'Reilly E P 2010 Phys. Rev. B 82 33411
[25] Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Chen J F, Tsai T Y, Xue Q K and Chen S C 2003 J. Crystal Growth 249 144
[26] Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Xue Q K, Lai W C and Chiou Y Z 2003 Mater. Lett. 57 4218
[27] Bai J, Wang Q, Wang T, Cullis A G and Parbrook P J 2009 J. Appl. Phys. 105 053505
[28] Bayram C and Razeghi M 2009 Appl. Phys. A 96 403
[29] Zhao W, Wang L, Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2011 Jpn. J. Appl. Phys. 50 065601
[30] Wang L, Zhao W, Lv W B, Wang L, Hao Z B and Luo Y 2011 Phys. Status Solidi C 1-4 201100303
[31] Tessarek C, Figge S, Aschenbrenner T, Bley S, Rosenauer A, Seyfried M, Kalden J, Sebald K, Gutowski J and Hommel D 2011 Phys. Rev. B 83 115316
[32] Tessarek C, Figge S and Hommel D 2014 J. Phys. D: Appl. Phys. 47 055108
[33] Park I K and Park S J 2011 Appl. Phys. Express 4 042102
[34] Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2012 Nanoscale Research Letters 7 617
[35] Lv W B, Wang L, Wang J X, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 128101
[36] Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B and Luo Y 2014 Appl. Phys. Express 7 025203
[37] Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13
[38] Li H J, Li P P, Kang J J, Li Z, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Express 6 102103
[39] Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
[40] Wang X H, Guo L W, Jia H Q, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2009 Appl. Phys. Lett. 94 111913
[41] Jia H Q, Guo L W, Wang W X and Chen H 2009 Adv. Mater. 21 4641
[42] Yang D, Wang L, Lv W B, Hao Z B and Luo Y 2015 Superlattices and Microstructures 82 26
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[9] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
No Suggested Reading articles found!