Special Issue:
TOPICAL REVIEW — III-nitride optoelectronic materials and devices
|
TOPICAL REVIEW—III-nitride optoelectronic materials and devices |
Prev
Next
|
|
|
Progress in research of GaN-based LEDs fabricated on SiC substrate |
Xu Hua-Yong (徐化勇)a b, Chen Xiu-Fang (陈秀芳)a, Peng Yan (彭燕)a, Xu Ming-Sheng (徐明升)a c, Shen Yan (沈燕)a c, Hu Xiao-Bo (胡小波)a, Xu Xian-Gang (徐现刚)a c |
a State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
b School of Physics, Shandong University, Jinan 250100, China;
c Shandong Inspur Huaguang Optoelectronics Co., Ltd, Jinan 250100, China |
|
|
Abstract The influence of buffer layer growth conditions on the crystal quality and residual stress of GaN film grown on silicon carbide substrate is investigated. It is found that the AlGaN nucleation layer with high growth temperature can efficiently decrease the dislocation density and stress of the GaN film compared with AlN buffer layer. To increase the light extraction efficiency of GaN-based LEDs on SiC substrate, flip-chip structure and thin film flip-chip structure were designed and optimized. The fabricated blue LED had a maximum wall-plug efficiency of 72% at 80 mA. At 350 mA, the output power, the Vf, the dominant wavelength, and the wall-plug efficiency of the blue LED were 644 mW, 2.95 V, 460 nm, and 63%, respectively.
|
Received: 09 January 2015
Revised: 08 April 2015
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301904) and the National Natural Science Foundation of China (Grant Nos. 11134006 and 61327808). |
Corresponding Authors:
Hu Xiao-Bo
E-mail: xbhu@sdu.edu.cn
|
About author: 73.61.Ey; 85.60.Jb |
Cite this article:
Xu Hua-Yong (徐化勇), Chen Xiu-Fang (陈秀芳), Peng Yan (彭燕), Xu Ming-Sheng (徐明升), Shen Yan (沈燕), Hu Xiao-Bo (胡小波), Xu Xian-Gang (徐现刚) Progress in research of GaN-based LEDs fabricated on SiC substrate 2015 Chin. Phys. B 24 067305
|
[1] |
Wei R, Song S, Yang K, Cui Y, Peng Y, Chen X, Hu X and Xu X 2013 J. Appl. Phys. 113 053503
|
[2] |
Moran B, Wu F, Romanov A E, Mishra U K, Denbaars S P and Speck J S 2004 J. Crystal. Growth 273 38
|
[3] |
Whitaker T 2001 Compd. Semicond. 7 7
|
[4] |
Whitaker T 2000 Compd. Semicond. 6 11
|
[5] |
Berkman E, Leonard R T, Paisley M J, Khlebnikov Y, O'Loughlin M J, Burk A A, Powell A R, Malta D P, Deyneka E, Brady M F, Khlebnikov I, Tsvetkov V F, Hobgood H M, Sumakeris J, Basceri C, Balakrishna V, Carter C H Jr and Balkas C 2009 Mater. Sci. Forum 615 3
|
[6] |
Schad S S, Scherer M, Seyboth M and Schwegler V 2001 Phys. Stat. Sol. (a) 188 127
|
[7] |
Momeen and Khan M Y 1995 Crystal. Res. Technol. 30 1127
|
[8] |
Han R, Xu X, Hu X, Yu N, Wang J, Tian Y and Huang W 2003 Opt. Mater. 23 415
|
[9] |
Kanaya M, Takahashi J, Fujiwara Y and Moritani A 1991 Appl. Phys. Lett. 58 56
|
[10] |
Augustine G, Hobgood M, Balakrishna V, Dunne G and Hopkins R H 1997 Phys. Stat. Sol. (b) 202 137
|
[11] |
Tairov Y M and Tsvetkov V F 1983 Prog. Crystal. Growth Charact. 7 111
|
[12] |
Yakimova R, Syväjärvi M, Iakimov T, Jacobsson H, Råback R, Vehanen A and Janzén E 2000 J. Crystal. Growth 217 255
|
[13] |
Rost H J, Siche D, Dolle J, Eiserbeck W, Müller T, Schulz D, Wagner G and Wollweber J 1999 Mater. Sci. Eng. B 61-62 68
|
[14] |
Stein R A and Lanig P 1993 J. Crystal. Growth 131 71
|
[15] |
Dmitriev V, Rendakova S, Kuznetsov N, Savkina N, Andreev A, Rastegaeva M, Mynbaeva M and Morozov A 1999 Mater. Sci. Eng. B 61-62 446
|
[16] |
Heindl J, Dorsch W, Eckstein R, Hofmann D, Marek T, Müller St G, Strunk H P and Winnacker A 1997 J. Crystal. Growth 179 510
|
[17] |
Giocondi J, Rohrer G S, Skowronski M, Balakrishna. V, Augustine G, Hobgood H M and Hopkins R H 1997 J. Crystal. Growth 181 351
|
[18] |
Liu J, Gao J, Cheng J, Yang J and Qiao G 2005 Mater. Lett. 59 2374
|
[19] |
Frank F C 1951 Acta Cryst. 4 497
|
[20] |
Ning L, Hu X, Xu X, Chen X, Wang Y, Jiang S and Li J 2008 J. Appl. Cryst. 41 939
|
[21] |
Grosse P, Basset G, Calvat C, Couchaud M, Faure C, Ferrand B, Grange Y, Anikin M, Bluet J M, Chourou K and Madar R 1999 Mater. Sci. Eng. B 61-62 58
|
[22] |
Yang K, Chen X, Yang X, Peng Y, Hu X and Xu X 2014 J. Synth. Cryst. 43 3055
|
[23] |
Xu M, Hu X and Xu X 2014 J. Synth. Cryst. 43 1346
|
[24] |
Li G, Chua J S, Xu S J, Wang W, Li P, Beaumont B and Gibart P 1999 Appl. Phys. Lett. 74 2821
|
[25] |
Krames M R, Ochiai-Holcomb M, Höfler G E, Carter-Coman C, Chen E I, Tan I H, Grillot P, Gardner N F, Chui H C, Huang J W, Stockman S A, Kish F A, Craford M G, Tan T S, Kocot C P, Hueschen M, Posselt J, Loh B, Sasser G and Collins D 1999 Appl. Phys. Lett. 75 2365
|
[26] |
Baur J, Hahn B, Fehrer M, Eisert D, Stein W, Plössl A, Kühn F, Zull H, Winter M and Härle V 2002 Phys. Stat. Sol. (a) 194 399
|
[27] |
Xu M, Xu H, Shen Y, Hu X and Xu X 2014 IEEE Photon. Technol. Lett. 26 1053
|
[28] |
Xi J Q, Luo H, Pasquale A J, Kim K S and Schubert E F 2006 IEEE Photon. Technol. Lett. 18 2347
|
[29] |
Von Malm N, Wirth R, Illek S and Steegmüller U 2010 Proc. SPIE 7784 778411
|
[30] |
Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S and Krames M R 2006 Appl. Phys. Lett. 89 071109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|