Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 056803    DOI: 10.1088/1674-1056/24/5/056803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Adsorption of glycine on diamond (001): Role of bond angle ofcarbon atoms

Li Lin (李林)a, Xu Jing (徐靖)b, Xu Li-Fang (徐力方)a, Lian Chao-Sheng (廉朝胜)a, Li Jun-Jie (李俊杰)a, Wang Jian-Tao (王建涛)a, Gu Chang-Zhi (顾长志)a c
a Beijing National Laboratory for Condensed Matter Physics, Institution of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics, Renmin University of China, Beijing 100872, China;
c Collaborative Innovation Center of Quantum Matter, Beijing, China
Abstract  

The adsorption behaviors of glycine on diamond (001) are systematically investigated by first-principles calculations. We have considered all possible adsorption configurations without a surface dangling bond and give a quantitative analysis for the relationship between the deviation of carbon bond angle and adsorption energy. We found that a smaller distortion of carbon covalent bond angle results in a more stable adsorption structure, and the most stable adsorption has a benzene-ring-like structure with the highest adsorption energy of 5.11 eV per molecule and the minimum distortion of carbon covalent bond angle.

Keywords:  surface adsorption      glycine molecule      diamond (001) surface      first-principles calculations  
Received:  07 January 2015      Revised:  05 February 2015      Accepted manuscript online: 
PACS:  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  81.05.ug (Diamond)  
  68.47.Pe (Langmuir-Blodgett films on solids; polymers on surfaces; biological molecules on surfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project of Chinese Academy of Sciences (Grand No. KJCX2-EW-W02), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, and the Research Funds of Renmin University of China.

Corresponding Authors:  Xu Jing, Gu Chang-Zhi     E-mail:  xj2005@ruc.edu.cn;czgu@iphy.ac.cn
About author:  68.43.-h; 81.05.ug; 68.47.Pe; 71.15.Mb

Cite this article: 

Li Lin (李林), Xu Jing (徐靖), Xu Li-Fang (徐力方), Lian Chao-Sheng (廉朝胜), Li Jun-Jie (李俊杰), Wang Jian-Tao (王建涛), Gu Chang-Zhi (顾长志) Adsorption of glycine on diamond (001): Role of bond angle ofcarbon atoms 2015 Chin. Phys. B 24 056803

[1] Bent S F 2002 Surf. Sci. 500 879
[2] Yates Jr J T 1998 Science 279 335
[3] Stekolnikov A A, Furthmüller J and Bechstedt F 2002 Phys. Rev. B 65 115318
[4] Ristein J 2006 Surf. Sci. 600 3677
[5] Nebel C E, RezeK B, Shin D C, Uetsuka H and Yang N J 2007 J. Phys. D: Appl. Phys. 40 6443
[6] Barlow S M, Kitching K J, Haq S and Richardson N V 1998 Surf. Sci. 401 322
[7] Unac R O, Vidales A M and Zgrablich G 2009 Adsorption Science & Technology 27 633
[8] Kanazawa K, Sainoo Y, Konishi Y, Yoshida S, Taninaka A, Okada A, M. Berthe, Kobayashi N, Takeuchi O and Shigekawa H 2007 J. Am. Chem. Soc. 129 740
[9] Kanazawa K, Taninaka A, Takeuchi O and Shigekawa H 2007 Phys. Rev. Lett. 99 216102
[10] Zhao X Y and Rodriguez J 2006 Surf. Sci. 600 2113
[11] Luo X, Qian G, Sagui C and Roland C 2008 Phys. Rev. B 112 2640
[12] Lomenech C, Bery G, Costa D, Stievano L and Lambert J F 2005 Chem. Phys. Chem. 6 1061
[13] Youn Y S, Jung S J, Lee H and Kim S 2009 Langmuir 25 7438
[14] Odbadrakh K, Luo X, Lee J G, Sagui C and Roland C 2007 J. Phys. Chem. C 111 12760
[15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[16] Kresse G and Hafner J 1996 Phys. Rev. B 54 11169
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Yu Y, Xu. L F and Gu C Z 2004 Acta Phys. Sin. 53 2714 (in Chinese)
[20] Yu Y, Gu C Z, Xu L F and Zhang S B 2004 Phys. Rev. B 70 125423
[21] Yang H X, Xu L F, Fang Z, Gu C Z and Zhang S B 2008 Phys. Rev. Lett. 100 026101
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!