CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Characterization of CoPt nanowire fabricated by glancing angle deposition |
Satoshi Kitai (锻代聪)a b, Zhang Zheng-Jun (张政军)a, Shi Ji (史蹟)b, Yoshio Nakamura (中村吉男)b |
a School of Materials Science and Engineering, Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China; b Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan |
|
|
Abstract CoPt and Co nanowire films were deposited by the Glancing Angle Deposition (GLAD) method. All samples are deposited on Si substrates that were covered by polystyrene spheres to assist the alignment of nanowires. SEM observation results show that the length and diameter of nanowires are uniform for all samples. According to the result of XRD, the crystal structure of CoPt is fcc. The angular dependence of magnetization of the nanowires shows that the easy axis of magnetization is along the growth direction of the nanowires.
|
Received: 16 October 2014
Revised: 17 December 2014
Accepted manuscript online:
|
PACS:
|
62.23.Hj
|
(Nanowires)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
Corresponding Authors:
Satoshi Kitai
E-mail: kita.s.aa@m.titech.ac.jp
|
About author: 62.23.Hj; 75.75.-c; 81.16.-c |
Cite this article:
Satoshi Kitai (锻代聪), Zhang Zheng-Jun (张政军), Shi Ji (史蹟), Yoshio Nakamura (中村吉男) Characterization of CoPt nanowire fabricated by glancing angle deposition 2015 Chin. Phys. B 24 056201
|
[1] |
Lin C J and Gorman G L 1992 Appl. Phys. Lett. 61 1600
|
[2] |
Wu B, Heidelberg A and Boland J J 2005 Nat. Mater. 4 525
|
[3] |
Tabib-Azar M, Nassirou M, Wang R, Sharma S, Kamins T I, Islam M S and Williams R S 2005 Appl. Phys. Lett. 87 113102
|
[4] |
Kim J Y, Jeong H and Jang D J 2011 J. Nanoparticle Res. 13 6699
|
[5] |
Zeng H, Zheng M, Skomski R, Sellmyer D J, Liu Y, Menon L and Bandyopadhyay S 2000 J. Appl. Phys. 87 4718
|
[6] |
Zhang X Y, Wen G H, Chan Y F, Zheng R K, Zhang X X and Wang N 2003 Appl. Phys. Lett. 83 3341
|
[7] |
Zeng H, Skomski R, Menon L, Liu Y, Bandyopadhyay S and Sellmyer D 2002 Phys. Rev. B 65 134426
|
[8] |
Castaldi L, Giannakopoulos K, Travlos A, Niarchos D, Boukari S and Beaurepaire E 2005 J. Magn. Magn. Mater. 290 544
|
[9] |
Fert A and Piraux L 1999 J. Magn. Magn. Mater. 200 338
|
[10] |
Visokay M R and Sinclair R 1995 Appl. Phys. Lett. 66 1692
|
[11] |
Yasui N, Imada A and Den T 2003 Appl. Phys. Lett. 83 3347
|
[12] |
Huang Y H, Okumura H, Hadjipanayis G C and Weller D 2002 J. Appl. Phys. 91 6869
|
[13] |
Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman M and Han X F 2008 J. Magn. Magn. Mater. 320 1803
|
[14] |
Li W, Peng Y, Jones G A, Shen T H and Hill G 2005 J. Appl. Phys. 97 034308
|
[15] |
Mallet J, Yu-Zhang K, Chien C L, Eagleton T S and Searson P C 2004 Appl. Phys. Lett. 84 3900
|
[16] |
Liu L F, Xie S S and Zhou W Y 2009 J. Phys. D: Appl. Phys. 42 205002
|
[17] |
Gapin A I, Ye X R, Aubuchon J F, Chen L H, Tang Y J and Jin S 2006 J. Appl. Phys. 99 08G902
|
[18] |
Choi J R, Oh S J, Ju H and Cheon J 2005 Nano Lett. 5 2179
|
[19] |
Wang Y W, Zhang L D, Meng G W, Peng X S, Jin Y X and Zhang J 2002 J. Phys. Chem. B 106 2502
|
[20] |
Sorop T G, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn R B, Gösele U and de Jongh L J 2004 J. Magn. Magn. Mater. 272 1656
|
[21] |
Liu H R, Lu Q F, Han X F, Liu X G, Xu B S and Jia H S 2012 Appl. Surf. Sci. 258 7401
|
[22] |
Xu X H, Wang F, Liu J J, Park K C and Fujishige M 2011 Sol. Energy Mater. Sol. Cells 95 791
|
[23] |
Navas D, Pirota K R, Mendoza Zelis P, Velazquez D, Ross C A and Vazquez M 2008 J. Appl. Phys. 103 07D523
|
[24] |
Khurshid H, Huang Y H, Bonder M J and Hadjipanayis G C 2009 J. Magn. Magn. Mater. 321 277
|
[25] |
Fodor P S, Tsoi G M and Wenger L E 2002 J. Appl. Phys. 91 8186
|
[26] |
Robbie K 1998 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 16 1115
|
[27] |
Su S, Lin L, Li Z, Feng J and Zhang Z 2013 Nanoscale Res. Lett. 8 405
|
[28] |
Li L, Zhai T, Zeng H, Fang X, Bando Y and Golberg D 2011 J. Mater. Chem. 21 40
|
[29] |
Liu Y, Yang Y, Zhang Y, Wang Y, Zhang X and Jiang Y 2013 Mater. Res. Bull. 48 721
|
[30] |
Kesapragada S V and Gall D 2006 Thin Solid Films 494 234
|
[31] |
Martín-Palma R J, Manso-Silván M, Lakhtakia A and Pantano C G 2009 Mater. Lett. 63 197
|
[32] |
Zhou C M and Gall D 2007 Appl. Phys. Lett. 90 093103
|
[33] |
Tripp R A, Dluhy R A and Zhao Y 2008 Nano Today 3 31
|
[34] |
Sun A C, Yuan F T, Hsu J H and Lee H Y 2009 Scr. Mater. 61 713
|
[35] |
Igasaki Y and Fujiwara T 1996 J. Cryst. Growth 158 268
|
[36] |
Alouach H, Fujiwara H and Mankey G J 2005 J. Vac. Sci. Technol. A 23 1046
|
[37] |
Ristau R A, Barmak K, Lewis L H, Coffey K R and Howard J K 1999 J. Appl. Phys. 86 4527
|
[38] |
Ciureanu M, Beron F, Clime L, Ciureanu P, Yelon A, Ovari T A, Cochrane R W, Normandin F and Veres T 2005 Electrochim. Acta 50 4487
|
[39] |
Paulus P M, Luis F, Kro M, Schmid G and Jongh L J De 2001 J. Magn. Magn. Mater. 224 180
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|