Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 026803    DOI: 10.1088/1674-1056/ac9fc1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording

Zhi Li(李智)1,2, Kun Zhang(张昆)1,2,†, Ao Du(杜奥)1, Hongchao Zhang(张洪超)1,2, Weibin Chen(陈伟斌)3, Ning Xu(徐宁)1,2, Runrun Hao(郝润润)2, Shishen Yan(颜世申)3, Weisheng Zhao(赵巍胜)1,2, and Qunwen Leng(冷群文)1,2
1 Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
2 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266101, China;
3 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  Thanks to the strong perpendicular magnetic anisotropy (PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage. However, reversed magnetic domains come into being with the increasing layer repetition ‘$N$’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization ($M_{\rm r}$). As a result, the product of $M_{\rm r}$ and thickness ($i.e.$, the remanent moment-thickness product, $M_{\rm r}t$), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]$_{80}$ multilayer with a total thickness of 68 nm on granular SiN$_{x}$ buffer layer. The $M_{\rm r}t$ value, $M_{\rm r}$ to saturation magnetization ($M_{\rm s}$) ratio as well as out of plane (OOP) coercivity ($H_{\rm coop}$) are high up to 2.97 memu/cm$^{2}$, 67%, and 1940 Oe (1 Oe = 79.5775 A$\cdot$m$^{-1}$), respectively, which is remarkably improved compared with that of continuous [Co/Pt]$_{80}$ multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of $M_{\rm r}t$, $M_{\rm r}/M_{\rm s}$ ratio, and $H_{\rm coop}$ can be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiN$_{x}$ buffer layer. This work provides an alternative solution for achieving high $M_{\rm r}t$ value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.
Keywords:  granular Co/Pt multilayers      perpendicular magnetic anisotropy      remanent moment-thickness product      magnetic recording  
Received:  07 September 2022      Revised:  24 October 2022      Accepted manuscript online:  03 November 2022
PACS:  68.65.Ac (Multilayers)  
  68.65.Cd (Superlattices)  
  75.50.Ss (Magnetic recording materials)  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51901008) and the National Key Research and Development Program of China (Grant No. 2021YFB3201800).
Corresponding Authors:  Kun Zhang     E-mail:  zhang_kun@buaa.edu.cn

Cite this article: 

Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文) High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording 2023 Chin. Phys. B 32 026803

[1] Wang X, Cao A, Li S, Tang J, Du A, Cheng H, Sun Y, Du H, Zhang X and Zhao W 2021 Phys. Rev. B 104 064421
[2] Wang M X, Cai W L, Cao K H, Zhou J Q, Wrona J, Peng S Z, Yang H W, Wei J Q, Kang W, Zhang Y G, Langer J, Ocker B, Fert A and Zhao W S 2018 Nat. Commun. 9 1
[3] Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A and Zhao W S 2018 Nat. Electron. 1 582
[4] Zhang X, Cai W, Zhang X, Wang Z, Li Z, Zhang Y, Cao K, Lei N, Kang W, Zhang Y, Yu H, Zhou Y and Zhao W 2018 ACS Appl. Mater. Interfaces 10 16887
[5] Fallarino L, Oelschlägel A, Arregi J A, Bashkatov A, Samad F, Böhm B, Chesnel K and Hellwig O 2019 Phys. Rev. B 99 024431
[6] Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y, Dai Y, Tian Y and Yan S 2021 Nat. Commun. 12 2473
[7] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E and Mangin S 2018 Adv. Mater. 30 1804004
[8] Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X and Zhang Y 2022 Appl. Phys. Rev. 9 011407
[9] Sato H, Ikeda S, Fukami S, Honjo H, Ishikawa S, Yamanouchi M, Mizunuma K, Matsukura F and Ohno H 2014 Jpn. J. Appl. Phys. 53 4S
[10] Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Proc. IEEE PP(99) 1398-1417
[11] Jiang Y, Zhou H, Zhu D, Wang C, Wang Z and Zhao W 2021 IEEE International Electron Devices Meeting (IEDM), December 13-15, 2021, San Francisco, USA, p. 8.2.1
[12] Hono K, Takahashi Y K, Ju G, Thiele J U, Ajan A, Yang X, Ruiz R and Wan L 2018 MRS Bull. 43 93
[13] Knepper J W and Yang F Y 2005 Phys. Rev. B 71 224403
[14] Davies J E, Hellwig O, Fullerton E E, Denbeaux G, Kortright J B and Liu K 2004 Phys. Rev. B 70 224434
[15] Stillrich H, Menk C, Frömter R and Oepen H P 2009 J. Appl. Phys. 105 07C308
[16] Alex M, Tselikov A, Mcdaniel T, Deeman N, Valet T and Chen D 2001 IEEE Trans. Magn. 37 1244
[17] Nguyen T N A, Fedotova J, Kasiuk J, Bayev V, Kupreeva O, Lazarouk S, Manh D H, Vu D L, Chung S, Åkerman J, Altynov V and Maximenko A 2018 Appl. Surf. Sci. 427 649
[18] Zhu F Q, Shang Z, Monet D and Chien C L 2007 J. Appl. Phys. 101 09J101
[19] Figueiredo-Prestes N, Zarpellon J, Costa D d S, Mazzaro I, de Camargo P C, de Oliveira A J A, Deranlot C, George J M and Mosca D H 2021 J. Phys. Chem. C 125 4885
[20] Yıldırım O, Marioni M A, Falub C V, Rohrmann H, Jaeger D, Rechsteiner M, Schneider D and Hug H J 2022 Scr. Mater. 207 114285
[21] Feng J, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P and Han X F 2017 Phys. Rev. Appl. 7 054005
[22] Wuu D S, Lo W C, Chiang C C, Lin H B, Chang L S, Horng R H, Huang C L and Gao Y J 2005 Surf. Coat. Technol. 198 114
[23] Zhang J, Sun Z, Sun J, Kang S, Yu S, Han G, Yan S, Mei L and Li D 2013 Appl. Phys. Lett. 102 152407
[24] Rahman M T, Dumas R K, Eibagi N, Shams N N, Wu Y C, Liu K and Lai C H 2009 Appl. Phys. Lett. 94 042507
[25] Mohakud S, Andraus S, Nishino M, Sakuma A and Miyashita S 2016 Phys. Rev. B 94 054430
[26] Hellwig O, Berger A, Kortright J B and Fullerton E E 2007 J. Magn. Magn. Mater. 319 13
[27] Zarpellon J, Jaffrés H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaȋtre A, Freimuth F, Duong Q H, Renucci P and Marie X 2012 Phys. Rev. B 86 205314
[28] Belle B D, Schedin F, Pilet N, Ashworth T V, Hill E W, Nutter P W, Hug H J and Miles J J 2007 J. Appl. Phys. 101 09F517
[29] Thomson T, Hu G and Terris B D 2006 Phys. Rev. Lett. 96 257204
[30] Besland M P, Lapeyrade M, Delmotte F and Hollinger G 2004 J. Vac. Sci. Technol. A 22 1962
[31] Carcia P F, McLean R S, Groner M D, Dameron A A and George S M 2009 J. Appl. Phys. 106 023533
[32] Donahue M J and Porter D G 1999 OOMMF user's guide, Version 1.0
[33] Fromter R, Stillrich H, Menk C and Oepen H P 2008 Phys. Rev. Lett. 100 207202
[1] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[2] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[3] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[4] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[5] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[6] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[7] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[8] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[9] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[10] Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure
Yi Liu(刘毅), Kai-Gui Zhu(朱开贵), Hui-Cai Zhong(钟汇才), Zheng-Yong Zhu(朱正勇), Tao Yu(于涛), Su-De Ma(马苏德). Chin. Phys. B, 2016, 25(11): 117805.
[11] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国). Chin. Phys. B, 2015, 24(9): 097506.
[12] Perpendicular magnetic tunnel junction and its application in magnetic random access memory
Liu Hou-Fang (刘厚方), Syed Shahbaz Ali, Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2014, 23(7): 077501.
[13] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao (朱涛). Chin. Phys. B, 2014, 23(4): 047504.
[14] Writability issues in high-anisotropy perpendicular magnetic recording media
Wang Fang (王芳), Xu Xiao-Hong (许小红). Chin. Phys. B, 2014, 23(3): 036802.
[15] L10 FePt thin films with [001] crystalline growth fabricated by ZnO addition and rapid thermal annealing
Liu Xi (刘曦), Ishio Shunji. Chin. Phys. B, 2013, 22(8): 087504.
No Suggested Reading articles found!