CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording |
Zhi Li(李智)1,2, Kun Zhang(张昆)1,2,†, Ao Du(杜奥)1, Hongchao Zhang(张洪超)1,2, Weibin Chen(陈伟斌)3, Ning Xu(徐宁)1,2, Runrun Hao(郝润润)2, Shishen Yan(颜世申)3, Weisheng Zhao(赵巍胜)1,2, and Qunwen Leng(冷群文)1,2 |
1 Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 2 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266101, China; 3 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract Thanks to the strong perpendicular magnetic anisotropy (PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage. However, reversed magnetic domains come into being with the increasing layer repetition ‘$N$’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization ($M_{\rm r}$). As a result, the product of $M_{\rm r}$ and thickness ($i.e.$, the remanent moment-thickness product, $M_{\rm r}t$), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]$_{80}$ multilayer with a total thickness of 68 nm on granular SiN$_{x}$ buffer layer. The $M_{\rm r}t$ value, $M_{\rm r}$ to saturation magnetization ($M_{\rm s}$) ratio as well as out of plane (OOP) coercivity ($H_{\rm coop}$) are high up to 2.97 memu/cm$^{2}$, 67%, and 1940 Oe (1 Oe = 79.5775 A$\cdot$m$^{-1}$), respectively, which is remarkably improved compared with that of continuous [Co/Pt]$_{80}$ multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of $M_{\rm r}t$, $M_{\rm r}/M_{\rm s}$ ratio, and $H_{\rm coop}$ can be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiN$_{x}$ buffer layer. This work provides an alternative solution for achieving high $M_{\rm r}t$ value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.
|
Received: 07 September 2022
Revised: 24 October 2022
Accepted manuscript online: 03 November 2022
|
PACS:
|
68.65.Ac
|
(Multilayers)
|
|
68.65.Cd
|
(Superlattices)
|
|
75.50.Ss
|
(Magnetic recording materials)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51901008) and the National Key Research and Development Program of China (Grant No. 2021YFB3201800). |
Corresponding Authors:
Kun Zhang
E-mail: zhang_kun@buaa.edu.cn
|
Cite this article:
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文) High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording 2023 Chin. Phys. B 32 026803
|
[1] Wang X, Cao A, Li S, Tang J, Du A, Cheng H, Sun Y, Du H, Zhang X and Zhao W 2021 Phys. Rev. B 104 064421 [2] Wang M X, Cai W L, Cao K H, Zhou J Q, Wrona J, Peng S Z, Yang H W, Wei J Q, Kang W, Zhang Y G, Langer J, Ocker B, Fert A and Zhao W S 2018 Nat. Commun. 9 1 [3] Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A and Zhao W S 2018 Nat. Electron. 1 582 [4] Zhang X, Cai W, Zhang X, Wang Z, Li Z, Zhang Y, Cao K, Lei N, Kang W, Zhang Y, Yu H, Zhou Y and Zhao W 2018 ACS Appl. Mater. Interfaces 10 16887 [5] Fallarino L, Oelschlägel A, Arregi J A, Bashkatov A, Samad F, Böhm B, Chesnel K and Hellwig O 2019 Phys. Rev. B 99 024431 [6] Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y, Dai Y, Tian Y and Yan S 2021 Nat. Commun. 12 2473 [7] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E and Mangin S 2018 Adv. Mater. 30 1804004 [8] Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X and Zhang Y 2022 Appl. Phys. Rev. 9 011407 [9] Sato H, Ikeda S, Fukami S, Honjo H, Ishikawa S, Yamanouchi M, Mizunuma K, Matsukura F and Ohno H 2014 Jpn. J. Appl. Phys. 53 4S [10] Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Proc. IEEE PP(99) 1398-1417 [11] Jiang Y, Zhou H, Zhu D, Wang C, Wang Z and Zhao W 2021 IEEE International Electron Devices Meeting (IEDM), December 13-15, 2021, San Francisco, USA, p. 8.2.1 [12] Hono K, Takahashi Y K, Ju G, Thiele J U, Ajan A, Yang X, Ruiz R and Wan L 2018 MRS Bull. 43 93 [13] Knepper J W and Yang F Y 2005 Phys. Rev. B 71 224403 [14] Davies J E, Hellwig O, Fullerton E E, Denbeaux G, Kortright J B and Liu K 2004 Phys. Rev. B 70 224434 [15] Stillrich H, Menk C, Frömter R and Oepen H P 2009 J. Appl. Phys. 105 07C308 [16] Alex M, Tselikov A, Mcdaniel T, Deeman N, Valet T and Chen D 2001 IEEE Trans. Magn. 37 1244 [17] Nguyen T N A, Fedotova J, Kasiuk J, Bayev V, Kupreeva O, Lazarouk S, Manh D H, Vu D L, Chung S, Åkerman J, Altynov V and Maximenko A 2018 Appl. Surf. Sci. 427 649 [18] Zhu F Q, Shang Z, Monet D and Chien C L 2007 J. Appl. Phys. 101 09J101 [19] Figueiredo-Prestes N, Zarpellon J, Costa D d S, Mazzaro I, de Camargo P C, de Oliveira A J A, Deranlot C, George J M and Mosca D H 2021 J. Phys. Chem. C 125 4885 [20] Yıldırım O, Marioni M A, Falub C V, Rohrmann H, Jaeger D, Rechsteiner M, Schneider D and Hug H J 2022 Scr. Mater. 207 114285 [21] Feng J, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P and Han X F 2017 Phys. Rev. Appl. 7 054005 [22] Wuu D S, Lo W C, Chiang C C, Lin H B, Chang L S, Horng R H, Huang C L and Gao Y J 2005 Surf. Coat. Technol. 198 114 [23] Zhang J, Sun Z, Sun J, Kang S, Yu S, Han G, Yan S, Mei L and Li D 2013 Appl. Phys. Lett. 102 152407 [24] Rahman M T, Dumas R K, Eibagi N, Shams N N, Wu Y C, Liu K and Lai C H 2009 Appl. Phys. Lett. 94 042507 [25] Mohakud S, Andraus S, Nishino M, Sakuma A and Miyashita S 2016 Phys. Rev. B 94 054430 [26] Hellwig O, Berger A, Kortright J B and Fullerton E E 2007 J. Magn. Magn. Mater. 319 13 [27] Zarpellon J, Jaffrés H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaȋtre A, Freimuth F, Duong Q H, Renucci P and Marie X 2012 Phys. Rev. B 86 205314 [28] Belle B D, Schedin F, Pilet N, Ashworth T V, Hill E W, Nutter P W, Hug H J and Miles J J 2007 J. Appl. Phys. 101 09F517 [29] Thomson T, Hu G and Terris B D 2006 Phys. Rev. Lett. 96 257204 [30] Besland M P, Lapeyrade M, Delmotte F and Hollinger G 2004 J. Vac. Sci. Technol. A 22 1962 [31] Carcia P F, McLean R S, Groner M D, Dameron A A and George S M 2009 J. Appl. Phys. 106 023533 [32] Donahue M J and Porter D G 1999 OOMMF user's guide, Version 1.0 [33] Fromter R, Stillrich H, Menk C and Oepen H P 2008 Phys. Rev. Lett. 100 207202 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|