Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 056103    DOI: 10.1088/1674-1056/24/5/056103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of heavy ion irradiation on DC and gate-lag performance of AlGaN/GaN HEMTs

Lei Zhi-Feng (雷志锋)a b, Guo Hong-Xia (郭红霞)c, Zeng Chang (曾畅)a, Chen Hui (陈辉)a, Wang Yuan-Sheng (王远声)a, Zhang Zhan-Gang (张战刚)a
a Key Laboratory of Low Dimensional Materials & Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411100, China;
b Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510000, China;
c Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  

AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1× 1010 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Both the drain current Id and the gate current Ig increased in off-state during irradiation. Post-irradiation measurement results show that the device output, transfer, and gate characteristics changed significantly. The saturation drain current, reverse gate leakage current, and the gate-lag all increased dramatically. By photo emission microscopy, electroluminescence hot spots were found in the gate area. All of the parameters were retested after one day and after one week, and no obvious annealing effect was observed under a temperature of 300 K. Further analysis demonstrates that swift heavy ions produced latent tracks along the ion trajectories through the hetero-junction. Radiation-induced defects in the latent tracks decreased the charges in the two-dimensional electron gas and reduced the carrier mobility, degrading device performance.

Keywords:  GaN      HEMTs      irradiation      heavy ions  
Received:  15 July 2014      Revised:  10 December 2014      Accepted manuscript online: 
PACS:  61.80.Jh (Ion radiation effects)  
  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61204112).

Corresponding Authors:  Guo Hong-Xia     E-mail:  leizf@ceprei.com
About author:  61.80.Jh; 73.61.Ey; 73.40.Kp

Cite this article: 

Lei Zhi-Feng (雷志锋), Guo Hong-Xia (郭红霞), Zeng Chang (曾畅), Chen Hui (陈辉), Wang Yuan-Sheng (王远声), Zhang Zhan-Gang (张战刚) Influence of heavy ion irradiation on DC and gate-lag performance of AlGaN/GaN HEMTs 2015 Chin. Phys. B 24 056103

[1] Nguyen C, Nguyen N X and Grider D E 1999 Electron. Lett. 35 1380
[2] Ionascut-Nedelcescu A, Carlone C, Houdayer A, Von Bardeleben H J, Cantin J L and Raymond S 2002 IEEE Trans. Nucl. Sci. 49 2733
[3] http://misse1.larc.nasa.gov/
[4] Gu W P, Zhang L, Li Q H, Qiu Y Z, Hao Y, Quan S and Liu P Z 2014 Acta Phys. Sin. 63 47202 (in Chinese)
[5] Holmes-Siedle A and Adams L 2004 Handbook of Radiation Effects (2nd edn.) (London, U.K.: Oxford University Press) p. 17
[6] Scherer K, Fichtner H, Heber B and Mall U 2005 Lect. Notes Phys. Springer 656 276
[7] Weaver B D, Martin P A, Boos J B and Cress C D 2012 IEEE Trans. Nucl. Sci. 59 3077
[8] Tania R, Zhang E X and Yevgeniy S 2010 IEEE Trans. Nucl. Sci. 57 3060
[9] Puzyrev Y S, Roy T, Zhang E X, Fleetwood D M, Schrimpf R D and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2918
[10] Berthet F, Guhel Y, Boudart B, Gualous H, Trolet J.L, Piccione M and Gaquiere C 2012 IEEE Trans. Nucl. Sci. 59 2556
[11] Luo B, Johnson J W, Ren F, Allums K K, Abernathy C R, Pearton S J, Dabiran A M, Wowchack A M, Polley C J, Chow P P, Schoenfeld D and Baca A G 2002 Appl. Phys. Lett. 80 604
[12] Kalavagunta A, Silvestri M, Beck M J, Dixit S K, Schrimpf R D, Reed R A, Fleetwood D M, Shen L and Mishra U K 2009 IEEE Trans. Nucl. Sci. 56 3192
[13] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron. Dev. 48 560
[14] Braga N, Mickevicius R, Gaska R, Shur M S, Khan M A and Simin G 2004 Appl. Phys. Lett. 85 4780
[15] Rashmi, Kranti A, Haldar S and Gupta R S 2002 Solid State Electron. 46 621
[16] Kucheyev S O, Timmers H, Zou J, Williams J S, Jagadish C and Li G 2004 J. Appl. Phys. 95 5360
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[7] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[8] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[9] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[10] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[11] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[12] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[13] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[14] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!