Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087503    DOI: 10.1088/1674-1056/ac673c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)

Qingrong Shao(邵倾蓉)1, Jing Meng(孟婧)1, Xiaoyan Zhu(朱晓艳)1, Yali Xie(谢亚丽)2, Wenjuan Cheng(程文娟)1, Dongmei Jiang(蒋冬梅)1, Yang Xu(徐杨)1, Tian Shang(商恬)1, and Qingfeng Zhan(詹清峰)1,†
1 Key Laboratory of Polar Materials and Devices(MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
2 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  Exchange coupling across the interface between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy, which has been extensively studied due to the important application in magnetic materials and devices. In this work, we observed a fourfold magnetic anisotropy in amorphous CoFeB layer when exchange coupling to an adjacent FeRh layer which is epitaxially grown on an SrTiO3(001) substrate. As the temperature rises from 300 K to 400 K, FeRh film undergoes a phase transition from AFM to FM phase, the induced fourfold magnetic anisotropy in the CoFeB layer switches the orientation from the FeRh$\langle 110\rangle $ to FeRh$\langle 100\rangle $ directions and the strength is obviously reduced. In addition, the effective magnetic damping as well as the two-magnon scattering of the CoFeB/FeRh bilayer also remarkably increase with the occurrence of magnetic phase transition of FeRh. No exchange bias is observed in the bilayer even when FeRh is in the nominal AFM state, which is probably because the residual FM FeRh moments located at the interface can well separate the exchange coupling between the below pinned FeRh moments and the CoFeB moments.
Keywords:  magnetic anisotropy      phase transition      CoFeB/FeRh      exchange coupling  
Received:  22 February 2022      Revised:  05 April 2022      Accepted manuscript online:  14 April 2022
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.50.Ee (Antiferromagnetics)  
  75.50.Gg (Ferrimagnetics)  
  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874150, 51871233, and 12174103) and the Natural Science Foundation of Shanghai (Grant Nos. 21ZR1420500 and 21JC1402300).
Corresponding Authors:  Qingfeng Zhan     E-mail:  qfzhan@phy.ecnu.edu.cn

Cite this article: 

Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰) Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001) 2022 Chin. Phys. B 31 087503

[1] Zhan Q F, Vandezande S, Temst K and Van Haesendonck C 2009 Phys. Rev. B 80 094416
[2] Huang Z C, Zhai Y, Lu Y X, Li G D, Wong P K J, Xu Y B, Xu Y X and Zhai H R 2008 Appl. Phys. Lett. 92 113105
[3] Ahmad E, Lopez-Diaz L, Gu E and Bland J A C 2000 J. Appl. Phys. 88 354
[4] Dai G H, Zhan Q F, Liu Y W, Yang H L, Zhang X S, Chen B and Li R W 2012 Appl. Phys. Lett. 100 122407
[5] Tang Z H, Wang B M, Yang H L, Xu X Y, Liu Y W, Sun D D, Xia L X, Zhan Q F, Chen B, Tang M H, Zhou Y C, Wang J L and Li R W 2014 Appl. Phys. Lett. 105 103504
[6] Berkowitz A E and Takano K 1999 J. Magn. Magn. Mater. 200 552
[7] Carey M J, Berkowitz A E, Borchers J A and Erwin R W 1993 Phys. Rev. B 47 9952
[8] Nogues J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[9] Parkin S S P, Roche K P, Samant M G, Rice P M, Beyers R B, Scheuerlein R E, O'Sullivan E J, Brown S L, Bucchigano J, Abraham D W, Lu Y, Rooks M, Trouilloud P L, Wanner R A and Gallagher W J 1999 J. Appl. Phys. 85 5828
[10] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodriguez A, Scholl A, Wang S X and Ramesh R 2008 Nat. Mater. 7 678
[11] Zhan Q F and Krishnan K M 2010 Appl. Phys. Lett. 96 112506
[12] Zhang W, Bowden M E and Krishnan K M 2011 Appl. Phys. Lett. 98 092503
[13] Fullerton E E, Jiang J S and Bader S D 1999 J. Magn. Magn. Mater. 200 392
[14] Zeng H, Li J, Liu J P, Wang Z L and Sun S H 2002 Nature 420 395
[15] Liu J P, Luo C P, Liu Y and Sellmyer D J 1998 Appl. Phys. Lett. 72 483
[16] Kouvel J S and Hartelius C C 1962 J. Appl. Phys. 33 1343
[17] Moruzzi V L and Marcus P M 1992 Phys. Rev. B 46 2864
[18] Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A and Dovletov A K 1996 J. Appl. Phys. 79 1689
[19] Sharma M, Aarbogh H M, Thiele J U, Maat S, Fullerton E E and Leighton C 2011 J. Appl. Phys. 109 083913
[20] Thiele J U, Maat S and Fullerton E E 2003 Appl. Phys. Lett. 82 2859
[21] Jen S U, Yao Y D, Chen Y T, Wu J M, Lee C C, Tsai T L and Chang Y C 2006 J. Appl. Phys. 99 053701
[22] Fuji Y, Kaji S, Hara M, Higashi Y, Hori A, Okamoto K, Nagata T, Baba S, Yuzawa A, Otsu K, Masunishi K, Ono T and Fukuzawa H 2018 Appl. Phys. Lett. 112 062405
[23] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[24] Paluskar P V, Kohlhepp J T, Swagten H J M, Koopmans B, Wolters R, Boeve H and Snoeck E 2007 J. Phys. D:Appl. Phys. 40 1234
[25] Wang D, Nordman C, Daughton J M, Qian Z, Fink J, Wang D, Nordman C, Daughton J M, Qian Z and Fink J 2004 IEEE T. Magn. 40 2269
[26] M, Komiyama K, Shirota Y, Fujiwara Y, Tsunashima S and Matsuuras 1997 J. Magn. Magn. Mater. 165 308
[27] Feng T and Childress J R 1999 J. Appl. Phys. 85 4937
[28] Oguz K and Coey J M D 2009 J. Magn. Magn. Mater. 321 1009
[29] Mizuguchi M, Suzuki Y, Nagahama T and Yuasa S 2007 Appl. Phys. Lett. 91 012507
[30] Kipgen L, Fulara H, Raju M and Chaudhary S 2012 J. Magn. Magn. Mater. 324 3118
[31] Maat S, Thiele J U and Fullerton E E 2005 Phys. Rev. B 72 214432
[32] Fan R, Kinane C J, Charlton T R, Dorner R, Ali M, de Vries M A, Brydson R M D, Marrows C H, Hickey B J, Arena D A, Tanner B K, Nisbet G and Langridge S 2010 Phys. Rev. B 82 184418
[33] Pressacco F, Uhliotar V, Gatti M, Bendounan A, Fullerton E E and Sirotti F 2016 Sci. Rep. 6 22383
[34] Ding Y, Arena D A, Dvorak J, Ali M, Kinane C J, Marrows C H, Hickey B J and Lewis L H 2008 J. Appl. Phys. 103 07B515
[35] Suzuki I, Koike T, Itoh M, Taniyama T and Sato T 2009 J. Appl. Phys. 105 07E501
[36] Han G C, Qiu J J, Yap Q J, Luo P, Laughlin D E, Zhu J G, Kanbe T and Shige T 2013 J. Appl. Phys. 113 17C107
[37] Xie Y L, Zhan Q F, Shang T A, Yang H L, Wang B M, Tang J and Li R W 2017 AIP Adv. 7 056314
[38] Kim C G, Rheem Y W, Kim C O, Shalyguina E E and Ganshina E A 2003 J. Magn. Magn. Mater. 262 412
[39] Xie Y, Zhan Q, Hu Y, Hu X, Chi X, Zhang C, Yang H, Xie W, Zhu X, Gao J, Cheng W, Jiang D and Li R W 2020 NPG Asia Mater. 12 67
[40] Stiles M D and McMichael R D 2001 Phys. Rev. B 63 064405
[41] Chang Y C, Hsiao S N, Liu S H, Su S H, Chiu K F, Hsieh W C, Chen S K, Lin Y G, Lee H Y, Sung C K and Duh J G 2015 J. Appl. Phys. 117 17D154
[42] Tomiyasu K, Inami T and Ikeda N 2004 Phys. Rev. B 70 184411
[43] Bai L H, Gui Y S, Wirthmann A, Recksiedler E, Mecking N, Hu C M, Chen Z H and Shen S C 2008 Appl. Phys. Lett. 92 032504
[44] Qiao S, Nie S, Zhao J, Huo Y, Wu Y and Zhang X 2013 Appl. Phys. Lett. 103 152402
[45] Mecking N, Gui Y S and Hu C M 2007 Phys. Rev. B 76 224430
[46] Ruiz-Calaforra A, Bracher T, Lauer V, Pirro P, Heinz B, Geilen M, Chumak A V, Conca A, Leven B and Hillebrands B 2015 J. Appl. Phys. 117 163901
[47] Chen Z, Kong W, Mi K, Chen G, Zhang P, Fan X, Gao C and Xue D 2018 Appl. Phys. Lett. 112 122406
[48] Zhao Y, Song Q, Yang S H, Su T, Yuan W, Parkin S S P, Shi J and Han W 2016 Sci. Rep. 6 22890
[49] Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306
[50] Infante I C, Osso J O, Sanchez F and Fontcuberta J 2008 Appl. Phys. Lett. 92 012508
[51] Dubowik J, Zaleski K, Glowinski H and Goscianska I 2011 Phys. Rev. B 84 184438
[52] Belmeguenai M, Tuzcuoglu H, Gabor M S, Petrisor T, Tiusan C, Berling D, Zighem F, Chauveau T, Chérif S M and Moch P 2013 Phys. Rev. B 87 184431
[53] McCord J, Mattheis R and Elefant D 2004 Phys. Rev. B 70 094420
[54] Le Graet C, Spenato D, Pogossian S P, Dekadjevi D T and Ben Youssef J 2010 Phys. Rev. B 82 100415
[55] Weber M C, Nembach H, Hillebrands B and Fassbender J 2005 J. Appl. Phys. 97 10A701
[56] McCord J, Kaltofen R, Schmidt O G and Schultz L 2008 Appl. Phys. Lett. 92 162506
[57] Tang Y J, Roos B F P, Mewes T, Frank A R, Rickart M, Bauer M, Demokritov S O, Hillebrands B, Zhou X, Liang B Q, Chen X and Zhan W S 2000 Phys. Rev. B 62 8654
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[6] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!