Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037501    DOI: 10.1088/1674-1056/ac20cd
REVIEW Prev   Next  

A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds

Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强)
School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract  The dilute magnetic intermetallic compound (DMIC) is an extended study of the dilute magnetic semiconductor. The giant magnetic effect and room temperature ferromagnetism are induced by doping minor 3d transition metal into REIn3 intermetallic compound. Owing to the metallic processability, the REIn3-based DMIC might have the potential application as magnetoelectric device. In this review, the structural stability, magnetic and electric transport properties of REIn3-xTx (RE=rare earth; T=Co, Mn, Fe; x=0—0.3) have been systematically summarized and analyzed.
Keywords:  dilute magnetic intermetallic compounds      phase transition      magnetic properties      magnetic transport  
Received:  22 June 2021      Revised:  22 August 2021      Accepted manuscript online:  25 August 2021
PACS:  75.50.-y (Studies of specific magnetic materials)  
  61.50.-f (Structure of bulk crystals)  
  61.66.Dk (Alloys )  
  75.30.Hx (Magnetic impurity interactions)  
Corresponding Authors:  Yong-Quan Guo     E-mail:

Cite this article: 

Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强) A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds 2022 Chin. Phys. B 31 037501

[1] Molnár S V 2003 Proc. IEEE 91 715
[2] Tachibana M, Taira N and Kawaji H 2011 Solid State Commun. 151 1776
[3] Kaminski B, Lafrentz M, Pisarev R V, Yakovlev D R, Pavlov V V, Lukoshkin V A, Henriques A B, Springholz G, Bauer G, Abramof E, Rappl P H O and Bayer M 2010 Phys. Rev. B 81 155201
[4] Mairoser T, Loder F, Melville A, Schlom D G and Schmehl A 2013 Phys. Rev. B 87 014416
[5] Zhou T G, Liu Z Q and Xu Z 2012 Chin. Phys. Lett. 29 047503
[6] Ahn K Y 1970 J. Appl. Phys. 41 1260
[7] Boeck J D, Oesterholt R, Esch A V, Bender H and Borghs G 1996 Appl. Phys. Lett. 68 2744
[8] Ohno H 1996 Appl. Phys. Lett. 69 363
[9] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[10] Twardowski A, Swiderski P, Von Ortenberg M and Pauthenet R 1984 Solid State Commun. 50 509
[11] Roy V A L, Djurišić A B, Liu H, Zhang X X, Leung Y H, Xie M H, Gao J, Lui H F and Surya C 2004 Appl. Phys. Lett. 84 756
[12] Ma X Y 2013 J. Mater. Sci 48 2111
[13] Wang X and Ma N 2004 J. Thermophys. Heat Transfer 18 476
[14] Deng Z, Zhao G Q and Jin C Q 2019 Acta Phys. Sin. 68 167502 (in Chinese)
[15] Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H and Jin C Q 2019 Chin. Phys. B 28 057501
[16] Kumar V, Sinha A, Singh B P, Sinha A P and Jha V 2015 Chin. Phys. Lett. 32 127701
[17] Medvedkin G A, Ishibashi T, Nishi T, Hayata K and Sato K 2000 Jpn. J. Appl. Phys. 39 L949
[18] Joseph D P, Ganesan S, Kovendhan M, Suthanthiraraj S A,Maruthamuthu P and Venkateswaran C 2011 Phys. Status Solidi A 208 2215
[19] Guo Y Q, Li S, Wang T and Xie N N 2017 AIP Adv. 7 085108
[20] Wang T, Guo Y Q, Wang C and Yang S W 2020 J. Magn. Magn. Mater. 502 166506
[21] Yao J L, Kline C N, Gu H, Yan M and Aitken J A 2009 J. Solid State Chem. 182 2579
[22] Yao J L, Brunetta C D and Aitken J A 2012 J. Phys.:Condens. Matter 24 086006
[23] Yao J L, Rudyk B W, Brunetta C D, Knorr K B, Figore H A, Mar A and Aitken J A 2012 Mater. Chem. Phys. 136 415
[24] Wang T, Guo Y Q, Wang C and Yang S W 2019 J. Alloys Compd. 774 229
[25] Umehara I, Ebihara T, Nagai N, Fujimaki Y, Satoh K and Ōnuki Y 1992 J. Phys. Soc. Jpn. 61 19
[26] Kletowski Z, Fabrowski R, Slawiński P and Henkie Z 1997 J. Magn. Magn. Mater. 166 361
[27] Kletowski Z, Czopnik A, Tal A and De Boer F 2000 Physica B 281 163
[28] Hale L, Gschneidner K A, Pecharsky V K and Mudryk Y 2009 J. Alloys Compd. 472 24
[29] Kletowski Z 1992 Solid State Commun. 83 241
[30] Nagai N, Umehara I, Ebihara T, Albessard A K, Sugawara H, Yamazaki T, Satoh K and Onuki Y 1993 Physica B 186-188 139
[31] Bajorek A, Chełkowska G, Chrobak A and Kwiecień-Grudziecka M 2012 Intermetallics 26 142
[32] Cabrera-Pasca G A, Mestnik-Filho J and Carbonari A W 2013 J. Appl. Phys. 113 17
[33] Silva L S, Peixoto E B, Mercena S G, Coelho A A, Meneses C T and Duque J G S 2016 Mater. Lett. 175 9
[34] Silva L S, Peixoto E B, Mercena S G, Coelho A A, Meneses C T and Duque J G S 2016 J. Supercond. Novel Magn. 29 423
[35] Settai R, Kubo T, Matsuda T D, Haga Y, Onuki Y and Harima H 2006 Physica B 378-380 417
[36] Han J P and Guo Y Q 2017 Intermetallics 89 74
[37] Karaki Y, Kubota M, Ishimoto H and Ōnuki Y 2000 Physica B 284-288 1690
[38] He Q and Guo Y Q 2016 Appl. Phys. A:Mater. Sci. Process. 122 455
[39] Kletowski Z, Markowski P J and Staliński B 1986 Solid State Commun. 57 293
[40] Galera R M and Morin P 1992 J. Magn. Magn. Mater. 116 159
[41] He Qiang, Hanyuan L and Yongquan G 2014 Chin. Sci. Bull. 59 1769
[42] Wang C, Guo Y Q and Yang S W 2019 Chin. Phys. B 28 086101
[43] Guo Y Q, Grin Y, Schnelle W and Li W 2007 J. Appl. Phys. 101 09N505
[44] Bittar E M, Adriano C, Giles C, Rettori C, Fisk Z and Pagliuso P G 2012 Phys. Rev. B 86 125108
[45] De Negri S, Kaczorowski D, Grytsiv A, Alleno E, Giovannini M, Gorzelniak R, Rogl P, Godart C, Saccone A and Ferro R 2004 J. Alloys Compd. 365 58
[46] Dhar S K, Mitra C, Manfrinetti P, Palenzona R and Palenzona A 2002 J. Phase Equilib. 23 79
[47] Yang S W, Guo Y Q and Wang C 2020 Phys. Status Solidi B 257 1900141
[48] Han J P and Guo Y Q 2017 Powder Diffr. 32 249
[49] Liu H Y 2014 Structure and electromagnetic transport properties of R-In-M (R=Nd,Gd; M=Co,Mn$) 1:3 intermetallic compounds, MS dissertation (Beijing:North China Electric Power University) (in Chinese)
[50] He Q, Guo Y Q and Liu H Y 2016 J. Magn. Magn. Mater. 401 44
[51] He Q 2016 Structural Stability and Dilute Magnetic Effect of Minor Co-doped Rare-Earth In-based 1:3 Compounds, MS dissertation (Beijing:North China Electric Power University) (in Chinese)
[52] Chen S L, Guo Y Q and He Q 2015 J. Appl. Phys. 117 123910
[53] Xue Z Q, Guo Y Q and Mei J 2014 Mater. Rep. 28 72
[54] Keshri S, Biswas S and Wiśniewski P 2016 J. Alloys Compd. 656 245
[55] Tan H and Guo Y Q 2019 Cryst. Res. Technol. 54 1800228
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!