Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047803    DOI: 10.1088/1674-1056/24/4/047803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain distributions of confined Au/Ag and Ag/Au nanoparticles

Huang Hong-Hua (黄红华)a, Zhang Ying (章英)a, Liu Xiao-Shan (刘晓山)a, Luo Xing-Fang (骆兴芳)a, Yuan Cai-Lei (袁彩雷)a, Ye Shuang-Li (叶双莉)b
a Laboratory of Nanomaterials and Sensors, School of Physics, Electronics and Communication, Jiangxi Normal University, Nanchang 330022, China;
b Institute of Microelectronics and Information Technology, Wuhan University, Wuhan 430072, China
Abstract  The strain distributions of Au/Ag and Ag/Au nanoparticles confined in the Al2O3 matrix with different core sizes are investigated by using the finite element method, respectively. The simulation results clearly indicate that the compressive strains exerted on the Au/Ag and Ag/Au nanoparticles can be induced by the Al2O3 matrix. Moreover, it can be found that the strain gradient existing in a Au/Ag nanoparticle is much larger than that in a Ag/Au nanoparticle, which could be due to the larger Young's modulus of Au than that of Ag. With the core size increasing, the strain gradient existing in the Au/Ag nanoparticle becomes larger, while the strain gradient existing in the Ag/Au nanoparticle keeps constant. These different strain distributions may have significant influences on the structures and morphologies of the Au/Ag and Ag/Au nanoparticles, leading to the different physical properties for potential applications.
Keywords:  nanoparticles      strain      finite element method  
Received:  12 August 2014      Revised:  31 October 2014      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  68.35.Gy (Mechanical properties; surface strains)  
  47.11.Fg (Finite element methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164008, 51461019, 51361013, 11174226, and 51371129).
Corresponding Authors:  Yuan Cai-Lei     E-mail:  clyuan@jxnu.edu.cn

Cite this article: 

Huang Hong-Hua (黄红华), Zhang Ying (章英), Liu Xiao-Shan (刘晓山), Luo Xing-Fang (骆兴芳), Yuan Cai-Lei (袁彩雷), Ye Shuang-Li (叶双莉) Strain distributions of confined Au/Ag and Ag/Au nanoparticles 2015 Chin. Phys. B 24 047803

[1] Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J and Chen M. 2012 Nat. Mater. 11 775
[2] Zhu T and Li J 2010 Prog. Mater. Sci. 55 710
[3] Wang L H, Liu P, Guan P F, Yang M J, Sun J L, Cheng Y Q, Hirata A, Zhang Z, Ma E, Chen M W and Han X D 2013 Nat. Commun. 4 2413
[4] Wang L H, Zhang Z and Han X D 2013 NPG Asia Mater. 5 e40
[5] Wang M, Tian Y, Zhang J M, Guo C F, Zhang X Z and Liu Q 2014 Chin. Phys. B 23 087803
[6] Sanyal U, Davis D T and Jagirdar B R 2013 Dalton Trans. 42 7147
[7] Toshima N and Yonezawa T 1998 New J. Chem. 22 1179
[8] Pustovalov V K and Fritzsche W 2013 Plasmonics 8 983
[9] Hubenthal F, Borg N and Träger F 2008 Appl. Phys. B 93 39
[10] Pustovalov V K, Astafyeva L G and Fritzsche W 2012 Plasmonics 7 469
[11] Samal A K, Polavarapu L and Rodal-Cedeira S 2013 Langmuir 29 15076
[12] Luo X F, Yuan C L and Zhang Z R 2008 Thin Solid Films 516 7675
[13] Yuan C L, Lee P S and Ye S L 2007 Europhys. Lett. 80 67003
[14] Wang B B, Zhou J, Zhang H P and Chen J P 2014 Chin. Phys. B 23 087303
[15] Wellner A, Paillard V, Bonafos C, Coffin H, Claverie A, Schmidt B and Heinig K H 2003 J. Appl. Phys. 94 5639
[16] Choi W K, Chew H G, Zheng F, Chim W K, Foo Y L and Fitzgerald E A 2006 Appl. Phys. Lett. 89 113126
[17] Chew H G, Zheng F, Choi W K, Chim W K, Foo Y L and Fitzgerald E A 2007 Nanotechnology 18 065302
[18] Cretí A, Zavelani-Rossi M, Lanzani G, Anni M, Manna L and Lomascolo M 2006 Phys. Rev. B 73 165410
[19] Cretí A, Anni M, Rossi M Z, Lanzani G, Leo G, Della Sala F, Manna L and Lomascolo M 2005 Phys. Rev. B 72 125346
[20] Klimov V I, McBranch D W, Leatherdale C A and Bawendi M G 1999 Phys. Rev. B 60 13740
[21] Newton M C, Leake S J, Harder R and Robinson I K 2010 Nat. Mater. 9 120
[22] Gilbert B, Huang F, Zhang H, Waychunas G A and Banfield J F 2004 Science 305 651
[23] Huebner K H, Dewhirst D L, Smith D E and Byrom T G 2001 The Finite Element Method for Engineers (New York: John Wiley & Sons)
[24] Benabbas T, Androussi Y and Lefebvre A 1999 J. Appl. Phys. 86 1945
[25] Pei Q X, Liu C and Wang Y Y 2003 J. Appl. Phys. 93 1487
[26] Gronqvist J, Søndergaard N, Boxberg F, Guhr T, Åberg S and Xu H Q 2009 J. Appl. Phys. 106 053508
[27] Barettin D, Madsen S, Lassen B and Willatzen M 2010 Superlattices Microstruct. 47 134
[28] Johnson C L, Snoeck E, Ezcurdia M, Rodríguez-González B, Pastoriza-Santos I, Liz-Marzán L M and Hÿtch M J 2008 Nat. Mater. 7 120
[29] Shan Z W, Adesso G, Cabot A, Sherburne M P, Syed Asif S A, Warren O L, Chrzan D C, Minor A M and Alivisatos A P 2008 Nat. Mater. 7 947
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[9] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[10] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[11] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[12] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
No Suggested Reading articles found!