Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047804    DOI: 10.1088/1674-1056/24/4/047804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields

A. E. Ershova b c d, A. P. Gavrilyukb d, S. V. Karpova c d, P. N. Seminaa
a L. V. Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, Russia, 660036;
b Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk, Russia, 660036;
c Siberian State Aerospace University, Krasnoyarsk, Russia, 660014;
d Siberian Federal University, Krasnoyarsk, Russia, 660028
Abstract  

Interactions of pulsed laser radiation with resonance domains of multiparticle colloidal aggregates having an increasingly complex local environment are studied via an optodynamic model. The model is applied to the simplest configurations, such as single particles, dimers, and trimers consisting of mono- and polydisperse Ag nanoparticles. We analyze how the local environment and the associated local field enhancement by surrounding particles affect the optodynamic processes in domains, including their photomodification and optical properties.

Keywords:  nanoparticle      surface plasmon      colloid aggregate      optodynamics  
Received:  26 June 2014      Revised:  24 November 2014      Accepted manuscript online: 
PACS:  78.67.Sc (Nanoaggregates; nanocomposites)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the Russian Academy of Sciences (Grant Nos. 24.29, 24.31, Ⅲ.9.5, 43, SB RAS-SFU (101), and 3-9-5).

Corresponding Authors:  S. V. Karpov     E-mail:  karpov@iph.krasn.ru

Cite this article: 

A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov, P. N. Semina Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields 2015 Chin. Phys. B 24 047804

[1] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[2] Plasmonics and Plasmonic Metamaterials: Analysis and Applications 2011 ed. by Shvets G and Tsukerman I (Singapore: World Scientific Series in Nanoscience and Nanotechnology, Vol. 4)
[3] Shalaev V M 2000 Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Berlin: Springer)
[4] Karpov S V and Slabko V V 2003 Optical and Photophysical Properties of Fractal-Structured Metal Sols (Russian Academy of Sciences, Siberian Novosibirsk: Branch)
[5] Stockman M I, Pandey L N and George T F 1998 Enhanced Nonlinear-Optical Responses of Disordered Clusters and Composites in Nonlinear Optical Materials (New York: Springer)
[6] Monticone F and Alù A 2014 Chin. Phys. B 23 047809
[7] Li J B, He M D, Wang X J, Peng X F and Chen L Q 2014 Chin. Phys. B 23 067302
[8] Tong L M, Wei H, Zhang S P, Li Z and Xu H X 2013 Phys. Chem. Chem. Phys. 15 4100
[9] Jiang T T, Yin N Q, Liu L, Lei J M, Zhu L X and Xu X L 2013 Chin. Phys. B 22 126102
[10] Zolanvari A, Sadeghi H, Norouzi R and Ranjgar A 2013 Chin. Phys. Lett. 30 096201
[11] Sadeghi H, Khalili H and Goodarzi M 2012 Chin. Phys. Lett. 29 096201
[12] Zijlstra P and Orrit M 2011 Rep. Prog. Phys. 74 106401
[13] Chen W W, Li T S, He S, Liu D B, Wang Z, Zhang W and Jiang X Y 2011 Sci. China: Chemistry 54 1227
[14] Perminov S V, Drachev V P and Rautian S G 2007 Opt. Express 15 8639
[15] Perminov S V, Drachev V P and Rautian S G 2008 Opt. Lett. 33 2998
[16] Perminov S V, Rautian S G and Safonov V P 2004 J. Exp. Theor. Phys. 98 691
[17] Gavrilyuk A P and Karpov S V 2009 Appl. Phys. B 97 163
[18] Gavrilyuk A P and Karpov S V 2011 Appl. Phys. B 102 65
[19] Karpov S V, Kodirov M K, Ryasnyanski A I and Slabko V V 2001 Quantum Electron. 31 904
[20] Ganeev R A, Ryasnyanski A I, Kamalov S R, Kodirov M K and Usmanov T 2001 J. Phys. D: Appl. Phys. 34 1602
[21] Karpov S V, Gerasimov V S, Isaev I L and Markel V A 2005 Phys. Rev. B 72 205425
[22] Karpov S V, Gerasimov V S, Isaev I L, Podavalova O P and Slabko V V 2007 Colloid J. 69 159
[23] Markel V A, Pustovit V N, Karpov S V, Obuschenko A V, Gerasimov V S and Isaev I L 2004 Phys. Rev. B 70 054202
[24] Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2014 Appl. Phys. B 115 547
[25] Claro F and Rojas R 1994 Appl. Phys. Lett. 65 2743
[26] Ershov A E, Isaev I L, Semina P N, Markel V A and Karpov S V 2012 Phys. Rev. B 85 045421
[27] Lin S, Li M, Dujardin E, Girard C and Mann S 2005 Adv. Mater. 17 2553
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[9] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[10] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[11] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[12] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[13] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[14] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[15] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
No Suggested Reading articles found!