Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047304    DOI: 10.1088/1674-1056/24/4/047304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An ultra-low specific on-resistance trench LDMOS with a U-shaped gate and accumulation layer

Li Peng-Cheng (李鹏程), Luo Xiao-Rong (罗小蓉), Luo Yin-Chun (罗尹春), Zhou Kun (周坤), Shi Xian-Long (石先龙), Zhang Yan-Hui (张彦辉), Lv Meng-Shan (吕孟山)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain (UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field (E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 mΩ · cm2 are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS (CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.
Keywords:  trench      U-shaped gate      specific on-resistance      breakdown voltage  
Received:  09 June 2014      Revised:  17 October 2014      Accepted manuscript online: 
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079) and the Program for New Century Excellent Talents at the University of Ministry of Education of China (Grant No. NCET-11-0062).
Corresponding Authors:  Luo Xiao-Rong     E-mail:  xrluo@uestc.edu.cn

Cite this article: 

Li Peng-Cheng (李鹏程), Luo Xiao-Rong (罗小蓉), Luo Yin-Chun (罗尹春), Zhou Kun (周坤), Shi Xian-Long (石先龙), Zhang Yan-Hui (张彦辉), Lv Meng-Shan (吕孟山) An ultra-low specific on-resistance trench LDMOS with a U-shaped gate and accumulation layer 2015 Chin. Phys. B 24 047304

[1] Tatsuhiko Fujihira and Yasushi Miyasaka 1998 IEEE ISPSD p. 423
[2] Fan Y H, Luo X R, Wang P, Zhou K, Zhang B and Li Z J 2013 Chin. Phys. Lett. 30 088503
[3] Duan B X and Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057
[4] Adriaan W Ludikhuize 2000 IEEE ISPSD p. 11
[5] Disney D R, Paul A K, Darwish M, Baseckiand R and Rumennik V 2001 IEEE ISPSD p. 399
[6] Huang H M, Wang Y W and Chen X B 2011 IEEE ASIC p. 547
[7] Md Mash-Hud Iqbal, Florin Udrea and Ettore Napoli 2009 IEEE ISPSD p. 247
[8] Yue L, Zhang B and Li Z J 2012 IEEE Electron. Dev. Lett. 33 1174
[9] Son W S, Sohn Y H and Choi S Y 2004 Solid-State Electron. 48 1629
[10] Varadarajan K R, Chow T P, Wang J, Liu R and Gonzalez F 2007 Proc. IEEE ISPSD p. 233
[11] Xia C, Cheng X H, Wang Z J, Xu D W, Cao D, Zheng L, Shen L Y, Yu Y H and Shen D S 2014 IEEE Trans. Electron Dev. 61 3477
[12] Zhang W T, Qiao M, Wu L J, Ye K, Wang Z, Wang Z G, Luo X R, Zhang S, Su W, Zhang B and Li Z J 2013 IEEE ISPSD p. 329
[13] Vestling L, Edholm B, Olsson J, Tiensuu S and Soderbarg A 1997 Proc. IEEE ISPSD p. 45
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[8] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[9] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[12] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[13] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[14] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!