CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties and magnetocaloric effects in HoPd intermetallic |
Mo Zhao-Jun (莫兆军)a b, Shen Jun (沈俊)b, Gao Xin-Qiang (高新强)b, Liu Yao (刘瑶)c, Wu Jian-Feng (吴剑峰)b, Shen Bao-Gen (沈保根)c, Sun Ji-Rong (孙继荣)c |
a School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; c State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the HoPd compound. Under the magnetic field change of 0-5 T, the magnetic entropy change -ΔSMmax and the refrigerant capacity RC for the compound are evaluated to be 20 J/(kg · K) and 342 J/kg, respectively. In particular, large -ΔSMmax (11.3 J/(kg · K)) and RC (142 J/kg) are achieved under a low magnetic field change of 0-2 T with no thermal hysteresis and magnetic hysteresis loss. The large reversible magnetocaloric effect (both the large -ΔSM and the high RC) indicates that HoPd is a promising material for magnetic refrigeration at low temperature.
|
Received: 09 September 2014
Revised: 20 October 2014
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
65.40.gd
|
(Entropy)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 11104337, 51271192, and 11274357) and the Knowledge Innovation Project of the Chinese Academy of Sciences. |
Corresponding Authors:
Shen Jun
E-mail: jshen@mail.ipc.ac.cn
|
Cite this article:
Mo Zhao-Jun (莫兆军), Shen Jun (沈俊), Gao Xin-Qiang (高新强), Liu Yao (刘瑶), Wu Jian-Feng (吴剑峰), Shen Bao-Gen (沈保根), Sun Ji-Rong (孙继荣) Magnetic properties and magnetocaloric effects in HoPd intermetallic 2015 Chin. Phys. B 24 037503
|
[1] |
Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[2] |
Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
|
[3] |
Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
|
[4] |
Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
|
[5] |
Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
|
[6] |
Hu F X, Shen B G, Sun J R, Chen Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
|
[7] |
Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
|
[8] |
Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X and Sun J R 2007 Chin. Phys. 16 3848
|
[9] |
Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
|
[10] |
Tegus O, Bao L H and Song L 2013 Chin. Phys. B 22 037506
|
[11] |
Geng Y X, Tegus O and Bi L G 2012 Chin. Phys. B 21 037504
|
[12] |
Pecharsky V K, Holm A P, Gschneidner, Jr K A and R Rink 2003 Phys. Rev. Lett. 91 198
|
[13] |
Pecharsky V K and Gschneidenr Jr K A 1997 Appl. Phys. Lett. 70 3299
|
[14] |
Zou J D 2012 Chin. Phys. B 21 037503
|
[15] |
Hu F X, Shen B G and J R Sun 2000 Appl. Phys. Lett. 76 3460
|
[16] |
Tishin A M, Spichkin Y I, in: Coey J M D, Tilley D R and Vij D R (Eds.) 2003 The Magnetocaloric Effect and its Applications (Bristol: Institute of Physics Publishing)
|
[17] |
Barclay J A and W A Steyert 1982 Cryogenics 22 73
|
[18] |
DiPirro M, Tuttle J, Jackson M, Canavan E, Warner B and Shirron P 2006 Adv. Cryog. Eng. 51A 969
|
[19] |
Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and Namiki T 2012 Appl. Phys. Lett. 100 152403
|
[20] |
Li L, Hutchison W D, Huo D X, Namiki T, Qian Z H and Nishimura K 2012 Scr. Mater. 67 237
|
[21] |
Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 152506
|
[22] |
Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2010 Appl. Phys. Lett. 96 152501
|
[23] |
Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
|
[24] |
Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C and Shen B G 2013 Appl. Phys. Lett. 102 192407
|
[25] |
Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
|
[26] |
Zhang X X, Wang F W and Wen G H 2001 J. Phys.: Condens. Matter 13 L747
|
[27] |
Banerjee S K 1964 Phys. Lett. 12 16
|
[28] |
Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 152506
|
[29] |
Li L, Nishimura K, Huo D, Kadonaga M, Namiki T and Qian Z H 2011 Appl. Phys. Exp. 4 093101
|
[30] |
Li L, Nishimura K, Usui G, Huo D and Qian Z H 2012 Intermetallics 23 101
|
[31] |
Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 1429
|
[32] |
Phan M H, Wood G T, Chaturvedi A, Stefanoski S, Nolas G S and Srikanth H 2008 Appl. Phys. Lett. 93 252505
|
[33] |
Shen J, Zhao J L, Hu F X, Wu J F, Sun J R and Shen B G 2010 Chin. Phys. B 19 047502
|
[34] |
Li L and Nishimura K 2009 Appl. Phys. Lett. 95 132505
|
[35] |
Shen B G, Sun J R, Hu F X, Zhang H W and Chen Z H 2009 Adv. Mater. 21 4545
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|