Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 036802    DOI: 10.1088/1674-1056/24/3/036802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Water-assisted highly enhanced crystallographic etching of graphene by iron catalysts

Xue Lei-Jiang (薛磊江)a, Yu Fang (余芳)b, Zhou Hai-Qing (周海青)b, Sun Lian-Feng (孙连峰)b
a College of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China;
b National Centre for Nanoscience and Technology, Beijing 100190, China
Abstract  

We report the assisted role of water vapor in crystallographic cutting of graphene via iron catalysts in reduced atmosphere. Without water, graphene can be tailored with smooth trenches composed of straight lines with angles of 60° or 120° between two adjacent trenches. After the addition of water, new chacteristics are found: such as almost no iron particles can be detected along the trenches; each trench becomes longer and lots of graphene nanoribbons can be generated. The underlying mechanism is proposed and discussed, which is attributed to stimulating and lengthening of the catalytic activity of iron particles by water vapor.

Keywords:  graphene      Raman spectra      iron catalysts  
Received:  28 September 2014      Revised:  29 October 2014      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  78.30.-j (Infrared and Raman spectra)  
  81.65.Cf (Surface cleaning, etching, patterning)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 10774032) and the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. Y2010031).

Corresponding Authors:  Zhou Hai-Qing, Sun Lian-Feng     E-mail:  hqzhou0817@gmail.com;slf@nanoctr.cn

Cite this article: 

Xue Lei-Jiang (薛磊江), Yu Fang (余芳), Zhou Hai-Qing (周海青), Sun Lian-Feng (孙连峰) Water-assisted highly enhanced crystallographic etching of graphene by iron catalysts 2015 Chin. Phys. B 24 036802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J and Gao H J 2014 Chin. Phys. B 23 096803
[5] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
[6] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
[7] Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408
[8] Zhang Z H, Chen C F and Guo W L 2009 Phys. Rev. Lett. 103 187204
[9] Muñoz-Rojas F, Fernández-Rossier J and Palacios J J 2009 Phys. Rev. Lett. 102 136810
[10] Li X L, Wang X R, Zhang L, Lee S and Dai H J 2008 Science 319 1229
[11] Ritter K A and Lyding J W 2009 Nat. Mater. 8 235
[12] Ma L, Wang J L, Yip J and Ding F 2014 J. Phys. Chem. Lett. 5 1192
[13] Zoberbier T, Chamberlain T W, Biskupek J, Kuganathan N, Eyhusen S, Bichoutskaia E, Kaiser U and Khlobystov A N 2012 J. Am. Chem. Soc. 134 3073
[14] Wang J, Ma L, Yuan Q, Zhu L and Ding F 2011 Angew. Chem. Int. Ed. 50 8041
[15] Konishi S, Sugimoto W, Murakami Y and Takasu Y 2006 Carbon 44 2338
[16] Ma L, Wang J L and Ding F 2013 Chem. Phys. Chem. 14 47
[17] Lukas M, Meded V, Vijayaraghavan A, Song L, Ajayan P M, Fink K, Wenzel W and Krupke R 2013 Nat. Commun. 4 1379
[18] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Nature 458 872
[19] Jiao L Y, Zhang L, Wang X R, Diankov G and Dai H J 2009 Nature 458 877
[20] Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, Espinosa-González C G, Tristán-López F, Ramírez-González D, Cullen D A, Smith D J, Terrones M and Vega-CantúY I 2009 Nano Lett. 9 1527
[21] Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M and Dresselhaus M S 2009 Science 323 1701
[22] Warner J H, Rümmeli M H, Ge L, Gemming T, Montanari B, Harrison N M, Büchner B and Briggs G A D 2009 Nat. Nanotechnol. 4 500
[23] Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I and Ajayan P M 2008 Nano Res. 1 116
[24] Ci L J, Song L, Jariwala D, Elías A L, Gao W, Terrones M and Ajayan P M 2009 Adv. Mater. 21 4487
[25] Datta S S, Strachan D R, Khamis S M and Johnson A T C 2008 Nano Lett. 8 1912
[26] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J and Jarillo-Herrero P 2009 Nano Lett. 9 2600
[27] Yu F, Zhou H Q, Zhang Z X, Tang D S, Chen M J, Yang H C, Wang G, Yang H F, Gu C Z and Sun L F 2012 Appl. Phys. Lett. 100 101904
[28] Hata K, Futaba D N, Mizuno K, Namai T, Yumura M and Iijima S 2004 Science 306 1362
[29] Amama P B, Pint C L, McJilton L, Kim S M, Stach E A, Murray P T, Hauge R H and Maruyama B 2009 Nano Lett. 9 44
[30] Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z and Sun L F 2010 J. Am. Chem. Soc. 132 944
[31] Zhou H Q, Yu F, Yang H C, Qiu C Y, Chen M J, Hu L J, Guo Y J, Yang H F, Gu C Z and Sun L F 2011 Chem. Commun. 47 9408
[32] Zhao Y C, Song L, Deng K, Liu Z, Zhang Z X, Yang Y L, Wang C, Yang H F, Jin A Z, Luo Q, Gu C Z, Xie S S and Sun L F 2008 Adv. Mater. 20 1772
[33] Cancado L G, Pimenta M A, Neves B R A, Dantas M S S and Jorio A 2004 Phys. Rev. Lett. 93 247401
[34] You Y M, Ni Z H, Yu T and Shen Z X 2008 Appl. Phys. Lett. 93 163112
[35] Guo Y F and Guo W L 2011 J. Phys. Chem. C 115 20546
[36] Yu F, Zhou H Q, Zhang Z X, Wang G, Yang H C, Chen M J, Tao L, Tang D S, He J and Sun L F 2013 Small 9 2405
[37] Yu F, Zhou H Q, Yang H C, Chen M J, Wang G and Sun L F 2012 Chem. Commun. 48 1042
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!