Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 096802    DOI: 10.1088/1674-1056/ac7555

In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction

Ruijie Wang(王瑞洁)1,†, Qilong Cui(崔其龙)1,†, Wen Zhu(朱文)1,2,†, Yijie Niu(牛艺杰)3, Zhanfeng Liu(刘站锋)1, Lei Zhang(张雷)4, Xiaojun Wu(武晓君)3, Shuangming Chen(陈双明)1,‡, and Li Song(宋礼)1
1 National Synchrotron Radiation Laboratory, University of Science and Technology of China(USTC), Hefei 230029, China;
2 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Department of Materials Sciences and Engineering, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei 230026, China;
4 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Transition-metal oxyhalides $MOX$ ($M = {\rm Fe}$, Cr, V; $O ={\rm oxygen}$, $X= {\rm F}$, Cl, Br, I), an emerging type of two-dimensional (2D) van der Waals materials, have been both theoretically and experimentally demonstrated to possess unique electronic and magnetic properties. However, the intrinsic in-plane anisotropic properties of 2D VOCl still lacks in-depth research, especially optical anisotropy. Herein, a systematic Raman spectroscopic study is performed on VOCl single-crystal with different incident laser polarization at various temperatures. The polarized-dependent Raman scattering spectra reveal that the ${{ A}}_{{\rm g}}$ mode of VOCl show a 2-lobed shape in parallel polarization configuration while a 4-lobed shape in vertical configuration. In addition, the temperature-dependent and thickness-dependent Raman scattering spectra confirm a relatively weak van der Waals interaction between each layers among VOCl single crystal. These findings might provide better understanding on the in-plane anisotropic phenomenon in VOCl layers, thus will accelate further application of 2D single crystals for nanoscale angle-dependent optoelectronics.
Keywords:  two-dimensional (2D) materials      in-plane anisotropy      Raman spectra  
Received:  25 April 2022      Revised:  30 May 2022      Accepted manuscript online:  02 June 2022
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project financially supported by National Natural Science Foundation of China (Grant No. U1932201), the International Partnership Program (Grant No. 211134KYSB20190063), the CAS (Chinese Academy of Sciences) Collaborative Innovation Program of Hefei Science Center (Grant No. 2020HSCCIP002), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2020-002), the Youth Innovation Promotion Association of CAS (Grant No. 2022457), and the USTC Research Funds of the Double First-Class Initiative (YD2310002004).
Corresponding Authors:  Shuangming Chen     E-mail:

Cite this article: 

Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼) In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction 2022 Chin. Phys. B 31 096802

[1] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523
[2] Xiaomu W, Aaron MJ, Kyle LS, Vy T, Yichen J, Huan Z, et al. 2015 Nat. Nanotechnol. 10 517
[3] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[4] Fang Y, Pan J, He J, Luo R, Wang D, Che X, et al. 2018 Angew. Chem. Int. Ed. 57 1232
[5] Nam G H, He Q, Wang X, Yu Y, Chen J, Zhang K, et al. 2019 Adv. Mater. 31 1807764
[6] Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, et al. 2015 Nano Lett. 15 5667
[7] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, et al. 2016 Adv. Funct. Mater. 26 1169
[8] Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, et al. 2016 ACS Nano 10 8067
[9] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Nat. Phys. 13 300
[10] Song Q, Pan X, Wang H, Zhang K, Tan Q, Li P, et al. 2016 Sci. Rep. 6 29254
[11] Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, et al. 2016 ACS Nano 10 8964
[12] Yang S, Liu Y, Wu M, Zhao L D, Lin Z, Cheng H C, et al. 2018 Nano Res. 11 554
[13] Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, et al. 2019 Adv. Opt. Mater. 7 1900631
[14] Papadakis S J, De Poortere E P, Shayegan M and Winkler R 2000 Phys. Rev. Lett. 84 5592
[15] Cui Q, Luo Z, Cui Q, Zhu W, Shou H, Wu C, et al. 2021 Adv. Funct. Mater. 31 2105339
[16] Guo J, Liu Y, Ma Y, Zhu E, Lee S, Lu Z, et al. 2018 Adv. Mater. 30 1705934
[17] Zhou Z, Cui Y, Tan P H, Liu X and Wei Z 2019 J. Semicond. 40 061001
[18] Glawion S, Scholz M R, Zhang Y Z, Valentí R, Saha-Dasgupta T, Klemm M, et al. 2009 Phys. Rev. B 80 155119
[19] Schönleber A, Angelkort J, van Smaalen S, Palatinus L, Senyshyn A and Morgenroth W 2009 Phys. Rev. B 80 064426
[20] Zhu W, Cui Q, Adam M L, Liu Z, Zhang L, Dai Z, et al. 2021 2D Mater. 8 025010
[21] Wang W J, Xu X T, Shen J, Wang Z, Zhang S L and Qu Z 2021 Chin. Phys. B 30 107502
[22] Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc. 140 2417
[23] Yao Y, Zhang Y, Xiong W, Wang Z, Sendeku M G, Li N, et al. 2019 Adv. Funct. Mater. 29 1903017
[24] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Chem. Soc. Rev. 44 2757
[25] Late D J, Liu B, Matte H S S R, Rao C N R and Dravid V P 2012 Adv. Funct. Mater. 22 1894
[26] Wang X, Shi W, She G and Mu L 2011 J. Am. Chem. Soc. 133 16518
[27] Wu J, Mao N, Xie L, Xu H and Zhang J 2015 Angew. Chem. Int. Ed. 54 2366
[28] Lu D, Luo S, Liu S, Yao H, Ren X, Zhou W, et al. 2018 J. Phys. Chem. C 122 24459
[29] Luo S, Qi X, Yao H, Ren X, Chen Q and Zhong J 2017 J. Phys. Chem. C 121 4674
[30] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, et al. 2014 Nat. Commun. 5 3252
[31] Ping Gao, et al. 2016 J. Electrochem. Soc. 163 A2326
[32] Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, et al. 2019 ACS Nano 13 11353
[33] Fang Y, Wang F, Wang R, Zhai T and Huang F 2021 Adv. Mater. 33 2101505
[34] Chen H, Li Y, Wu H, Peng Y, Fang Y, Chen C, et al. 2019 Solid State Commun. 289 56
[35] Viana B C, Alencar R S, Vieira A G, Carozo V, Filho A G S, Wang J, et al. 2020 Vib. Spectrosc. 111 103169
[36] Chen Y, Deng C, Wei Y, Liu J, Su Y, Xie S, et al. 2021 Appl. Phys. Lett. 119 063104
[37] Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 J. Phys. Chem. C 117 9042
[38] Late D J, Maitra U, Panchakarla L S, Waghmare U V and Rao C N R 2011 J. Phys.:Condens. Matter 23 055303
[39] Taube A, Judek J, Jastrzębski C, Duzynska A, Świtkowski K and Zdrojek M 2014 ACS Appl. Mater. Interfaces 6 8959
[40] Pawbake A S, Pawar M S, Jadkar S R and Late D J 2016 Nanoscale 8 3008
[41] Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, et al. 2015 Nat. Commun. 6 8572
[42] Li Z, Wang Y, Jiang J, Liang Y, Zhong B, Zhang H, et al. 2020 Nano Res. 13 591
[43] Irfan B, Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F, Katiyar R S, et al. 2014 J. Appl. Phys. 115 173506
[44] Lee S, Kim K, Dhakal K P, Kim H, Yun W S, Lee J, et al. 2017 Nano Lett. 17 7744
[1] Anisotropic photoresponse of layered rhenium disulfide synaptic transistors
Chunhua An(安春华), Zhihao Xu(徐志昊), Jing Zhang(张璟), Enxiu Wu(武恩秀), Xinli Ma(马新莉), Yidi Pang(庞奕荻), Xiao Fu(付晓), Xiaodong Hu(胡晓东), Dong Sun(孙栋), Jinshui Miao(苗金水), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(8): 088503.
[2] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[3] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[4] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[5] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
[6] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[7] Optical phonon behavior and magnetism of columbite Zn0.8Co0.2Nb2O6
Liang Li(李亮), Xiaohan Wang(王晓晗), Ying Liu(刘莹), Fangfei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2019, 28(12): 128104.
[8] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[9] Compression behavior and spectroscopic properties of insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene from dispersion-corrected density functional theory
Yan Su(苏艳), Junyu Fan(范俊宇), Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军), Huajie Song(宋华杰). Chin. Phys. B, 2018, 27(5): 056401.
[10] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[11] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[12] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
[13] Bismuth-content-dependent polarized Raman spectrum of InPBi alloy
Guan-Nan Wei(魏冠男), Qing-Hai Tan(谭青海), Xing Dai(戴兴), Qi Feng(冯琦), Wen-Gang Luo(骆文刚), Yu Sheng(盛宇), Kai Wang(王凯), Wen-Wu Pan(潘文武), Li-Yao Zhang(张立瑶), Shu-Min Wang(王庶民), Kai-You Wang(王开友). Chin. Phys. B, 2016, 25(6): 066301.
[14] Structural transitions of SWNT filled with C60 under high pressure
Yong-gang Zou(邹永刚), Li Xu(徐莉), Kun Tian(田锟), He Zhang(张贺), Xiao-hui Ma(马晓辉), Ming-guang Yao(姚明光). Chin. Phys. B, 2016, 25(5): 056101.
[15] High-pressure Raman study of solid hydrogen up to 300 GPa
Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Gang Wu(吴刚), Xin Li(李鑫), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2016, 25(3): 037401.
No Suggested Reading articles found!