Strain analysis of free-standing strained silicon-on-insulator nanomembrane
Sun Gao-Di (孙高迪)a b, Dong Lin-Xi (董林玺)a, Xue Zhong-Ying (薛忠营)b, Chen Da (陈达)b, Guo Qing-Lei (郭庆磊)b, Mu Zhi-Qiang (母志强)b
a Key Laboratory of RF Circuits and System of the Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; b State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract Based on the ultra-thin strained silicon-on-insulator (sSOI) technology, by creatively using a hydrofluoric acid (HF) vapor corrosion system to dry etch the SiO2 layer, a large area of suspended strained silicon (sSi) nanomembrane with uniform strain distribution is fabricated. The strain state in the implemented nanomembrane is comprehensively analyzed by using an UV-Raman spectrometer with different laser powers. The results show that the inherent strain is preserved while there are artificial Raman shifts induced by the heat effect, which is proportional to the laser power. The suspended sSOI nanomembrane will be an important material for future novel high-performance devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376117 and 61107025) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F040004).
Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强) Strain analysis of free-standing strained silicon-on-insulator nanomembrane 2015 Chin. Phys. B 24 036801
[1]
Chu M, Sun Y K, Aghoram U and Thompson S E 2009 Annu. Rev. Mater. Res. 39 203
[2]
Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Su B, Wang B and Wang G Y 2013 Acta Phys. Sin. 62 077103 (in Chinese)
[3]
Zhao G J, Yang S Y, Liu G P, Liu C B, Sang L, Gu C Y, Liu X L, Wei H Y, Zhu Q S and Wang Z G 2013 Chin. Phys. Lett. 30 098102
[4]
Ismail K, Meyerson B S and Wang P J 1991 Appl. Phys. Lett. 58 2117
[5]
Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Lü Y, Wang B and Wang G Y 2014 Acta Phys. Sin. 63 017101 (in Chinese)
[6]
Ishikawa Y, Wada K, Cannon D D, Liu J F, Luan H C and Kimerling L C 2003 Appl. Phys. Lett. 82 2044
[7]
Koester S J, Rim K, Chu J O, Mooney P M, Ott J A and Hargrove M A 2001 Appl. Phys. Lett. 79 2148
[8]
Liu X Y, Liu W L, Ma X B, Lv S L, Song Z T and Lin C L 2010 Appl. Surf. Sci. 256 3499
[9]
Xiong G, Moutanabbir O, Huang X J, Paknejad S A, Shi X W, Harder R, Reiche M and Robinson I K 2011 Appl. Phys. Lett. 99 114103
[10]
Hashemi P, Canonico M, Yang J K W, Gomez L, Berggren K K and Hoyt J L 2008 ECS Transactions 16 57
[11]
Hart T R, Aggarwal R L and Lax B 1970 Phys. Rev. B 1 638
[12]
Doerk G S, Carraro C and Maboudian R 2010 ACS Nano 4 4908
[13]
Moritz H D, Talbott J A, Chandra M, Tseronis J A and Jafri I 2002 U.S. Patent 6334266B1 [2002-01-01]
[14]
Yuan H C, Wang G, Ma Z, Roberts M M, Savage D E and Lagally M G 2007 Semicond. Sci. Technol. 22 S72
[15]
Mu Z Q, Xue Z Y, Wei X, Chen D, Zhang M, Di Z F and Wang X 2014 Thin Solid Films 557 101
[16]
Dombrowski K F, Wolf I D and Dietrich B 1999 Appl. Phys. Lett. 75 2450
[17]
Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J. Appl. Phys. 75 8098
[18]
Langdo T A, Currie M T, Lochtefeld A, Hammond R, Carlin J A, Erdtmann M, Braithwaite G, Yang V K, Vineis C J, Badawi H and Bulsara M T 2003 Appl. Phys. Lett. 82 4256
[19]
Süess M J, Minamisawa R A, Geiger R, Bourdelle K K, Sigg H and Spolenak R 2014 Nano Lett. 14 1249
[20]
Picu R C, Borca T T and Pavel M C 2003 J. Appl. Phys. 93 3535
[21]
Liu W and Asheghi M 2004 Appl. Phys. Lett. 84 3819.
[22]
Li D Y, Wu Y Y, Kin P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[12]
Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.