Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126401    DOI: 10.1088/1674-1056/24/12/126401

Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples: Phase-field simulation

Li Yong-Sheng (李永胜), Wu Xing-Chao (吴兴超), Liu Wei (刘苇), Hou Zhi-Yuan (侯志远), Mei Hao-Jie (梅浩杰)
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface. The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient, composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure.
Keywords:  interface      diffusion      temperature gradient      phase-field  
Received:  16 April 2015      Revised:  14 August 2015      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  64.75.Nx (Phase separation and segregation in solid solutions)  
  66.30.Fq (Self-diffusion in metals, semimetals, and alloys) (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51571122) and the Fundamental Research Funds for the Central Universities, China (Grant No. 30920130121012).
Corresponding Authors:  Li Yong-Sheng     E-mail:

Cite this article: 

Li Yong-Sheng (李永胜), Wu Xing-Chao (吴兴超), Liu Wei (刘苇), Hou Zhi-Yuan (侯志远), Mei Hao-Jie (梅浩杰) Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples: Phase-field simulation 2015 Chin. Phys. B 24 126401

[1] Nesbitt J A and Heckel R W 1987 Metall. Trans. A 18 2061
[2] Yang D, Wu B Y, Chan Y C and Tu K N 2007 J. Appl. Phys. 102 043502
[3] Kobayashi S, Tsukamoto Y, Takasugi T, Chinen T, Omori T, Ishida K and Zaefferer S 2009 Intermetallics 17 1085
[4] Oberhauser S, Strobl Ch, Schreiber G, Wuestefeld Ch and Rafaja D 2010 Surf. Coat. Technol. 204 2307
[5] Li Y S, Cheng X L, Xu F and Du Y L 2011 Chin. Phys. Lett. 28 106601
[6] Morral J E 2012 Metall. Mater. Trans. A 43 3462
[7] Garimella N, Ode M, Ikeda M, Murakami H and Sohn Y H 2009 J. Phase. Equilib. Diff. 30 246
[8] Jezierska E, López G A and Zieba P 2003 Mater. Chem. Phys. 81 569
[9] Li Y S, Zhang L, Zhu H and Pang Y X 2013 Metall. Mater. Trans. A 44 3060
[10] Witanachchi S, Weerasingha H, Mourad H A and Mukherjee P 2010 Physica B 405 208
[11] Heulens J, Blanpain B and Moelans N 2011 Acta Mater. 59 3946
[12] Pan X, Zhou N, Morral J E and Wang Y 2010 Acta Mater. 58 4149
[13] Sohn Y H and Dayananda M A 2000 Acta Mater. 48 1427
[14] Hofman G L, Hayes S L and Petri M C 1996 J. Nucl. Mater. 227 277
[15] Hu S Y and Henager Jr C H 2010 Acta Mater. 58 3230
[16] Mohanty R R, Guyer J E and Sohn Y H 2009 J. Appl. Phys. 106 034912
[17] Snyder A, Akaiwa N, Alkemper J and Voorhees P W 1999 Metal. Mater. Trans. A 30 2341
[18] Ta N, Zhang L, Tang Y, Chen W and Du Y 2015 Surf. Coat. Technol. 261 364
[19] Ravash H, Vleugels J and Moelans N 2014 J. Mater. Sci. 49 7066
[20] Chen L Q 2002 Ann. Rev. Mater. Res. 32 113
[21] Yang T, Zhang J, Long J, Long Q H and Chen Z 2014 Chin. Phys. B 23 088109
[22] Zhang L, Steinbach I and Du Y 2011 Int. J. Mater. Res. 102 371
[23] Cahn J W 1961 Acta Metall. 9 795
[24] Darken L S 1948 Trans. AIME 175 184
[25] Wu K, Chang Y A and Wang Y 2004 Scr. Mater. 50 1145
[26] Chen L Q and Shen J 1998 Comput. Phys. Commun. 108 147
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[5] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[6] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[7] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[8] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[9] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[10] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[11] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[15] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
No Suggested Reading articles found!