Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126402    DOI: 10.1088/1674-1056/24/12/126402
SPECIAL TOPIC—8th IUPAP International Conference on Biological Physics Prev   Next  

Saturated sodium chloride solution under an external static electric field: A molecular dynamics study

Ren Gan (任淦)a b, Wang Yan-Ting (王延颋)a
a State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  The behavior of saturated aqueous NaCl solutions under a constant external electric field (E) was studied by molecular dynamics (MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation. Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate.
Keywords:  NaCl solution      nucleation      static external electric field      molecular dynamics simulation  
Received:  02 May 2015      Revised:  30 June 2015      Accepted manuscript online: 
PACS:  64.60.qe (General theory and computer simulations of nucleation)  
  81.10.Dn (Growth from solutions)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 91227115, 11274319, and 11421063).
Corresponding Authors:  Wang Yan-Ting     E-mail:  wangyt@itp.ac.cn

Cite this article: 

Ren Gan (任淦), Wang Yan-Ting (王延颋) Saturated sodium chloride solution under an external static electric field: A molecular dynamics study 2015 Chin. Phys. B 24 126402

[1] Kashchiev D 1982 J. Chem. Phys. 76 5098
[2] Ford I J 1996 J. Chem. Phys. 105 8324
[3] Das S, Kear B and Adam C 1985 Morristown 1985
[4] Toner M, Cravalho E G and Karel M 1990 J. Appl. Phys. 67 1582
[5] McDonald J E 1962 Am. J. Phys. 30 870
[6] McDonald J E 1963 Am. J. Phys. 31 31
[7] Ren G and Wang Y T 2014 Europhys. Lett. 107 30005
[8] Marcus Y and Hefter G 2006 Chem. Rev. 106 4585
[9] Georgalis Y, Kierzek A M and Saenger W 2000 J. Phys. Chem. B 104 3405
[10] Bian H, Wen X, Li J, Chen H, Han S, Sun X, Song J, Zhuang W and Zheng J 2011 Proc. Natl. Acad. Sci. USA 108 4737
[11] Chialvo A A and Simonson J M 2007 J. Mol. Liq. 134 15
[12] Fennell C J, Bizjak A, Vlachy V and Dill K A 2009 J. Phys. Chem. B 113 6782
[13] Sherman D M and Collings M D 2002 Geochem. Trans. 3 102
[14] Hassan S A 2008 J. Phys. Chem. B 112 10573
[15] Hassan S A 2008 Phys. Rev. E 77 031501
[16] Zahn D 2004 Phys. Rev. Lett. 92 040801
[17] Zahn D 2007 J. Phys. Chem. B 111 5249
[18] Yang Y and Meng S 2007 J. Chem. Phys. 126 044708
[19] Gebauer D, Völkel A and Cölfen H 2008 Science 322 1819
[20] Demichelis R, Raiteri P, Gale J D, Quigley D and Gebauer D 2011 Nat. Commun. 2 590
[21] Wallace A F, Hedges L O, Fernandez-Martinez A, Raiteri P, Gale J D, Waychunas G A, Whitelam S, Banfield J F and De Yoreo J J 2013 Science 341 885
[22] Wien M 1928 Ann. d. Physik 85 795
[23] Onsager L and Kim S K 1957 J. Phys. Chem. 61 198
[24] Ren G, Shi R and Wang Y 2014 J. Phys. Chem. B 118 4404
[25] Moroni D, ten Wolde P R and Bolhuis P G 2005 Phys. Rev. Lett. 94 235703
[26] Lechner W, Dellago C and Bolhuis P G 2011 Phys. Rev. Lett. 106 085701
[27] Oxtoby D W 1992 J. Phys.: Condens. Matter 4 7627
[28] Brooks B R, Bruccoleri R E, Olafson B D, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187
[29] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[30] Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[31] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[32] Nosé S 1984 J. Chem. Phys. 81 511
[33] Hoover W G 1985 Phys. Rev. A 31 1695
[34] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[35] Wang Y and Voth G A 2006 J. Phys. Chem. B 110 18601
[36] Deng L, Wang Y and Ou-yang Z C 2012 J. Phys. Chem. B 116 10135
[37] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[38] Lechner W and Dellago C 2008 J. Chem. Phys. 129 114707
[39] Yasuoka K and Matsumoto M 1998 J. Chem. Phys. 109 8451
[40] Romer F and Kraska T 2007 J. Chem. Phys. 127 234509
[41] Nielsen A E 1964 Kinetics of precipitation (Oxford: Pergamon Press) p. 29
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!