CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic phase transition and magnetocaloric effect in Mn1-xZnxCoGe alloys |
Shen Cheng-Juan (沈程娟), Liu Qiang (刘强), Gong Yuan-Yuan (龚元元), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) |
National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China |
|
|
Abstract The magnetic phase transition and magnetocaloric effect are studied in a series of Mn1-xZnxCoGe (x=0.01, 0.02, 0.04, and 0.08) alloys. By introducing a small quantity of Zn element, the structural transformation temperature of the MnCoGe alloy is greatly reduced and a first-order magnetostructural transition is observed. Further increasing the Zn concentration results in a second-order ferromagnetic transition. Large room-temperature magnetocaloric effects with small magnetic hysteresis are obtained in alloys with x=0.01 and 0.02, which suggests their potential application in magnetic refrigeration.
|
Received: 02 April 2014
Revised: 09 May 2014
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
81.30.Kf
|
(Martensitic transformations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51371095). |
Corresponding Authors:
Wang Dun-Hui
E-mail: wangdh@nju.edu.cn
|
Cite this article:
Shen Cheng-Juan (沈程娟), Liu Qiang (刘强), Gong Yuan-Yuan (龚元元), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) Magnetic phase transition and magnetocaloric effect in Mn1-xZnxCoGe alloys 2014 Chin. Phys. B 23 097502
|
[1] |
Pecharsky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
|
[2] |
Glanz J 1998 Science 279 2045
|
[3] |
Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[4] |
Trung N T, Biharie V, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 162507
|
[5] |
Trung N T, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 172504
|
[6] |
Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F 2012 Nat. Commun. 3 873
|
[7] |
Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L and Zhang X X 2013 Appl. Phys. Lett. 102 122405
|
[8] |
Zhang C L, Zhu C, Chen J, Wang T Z and Han Z D 2012 J. Appl. Phys. 112 123911
|
[9] |
Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
|
[10] |
Chen F H, Gong C W, Guo Y P, Zhang M G and Chai Y S 2014 Chin. Phys. B 23 067501
|
[11] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and PlanesA 2005 Nat. Mater. 4 450
|
[12] |
Trung N T, Ou Z Q, Gortenmulder T J, Tegus O, Buschow K H J and Brück E 2009 Appl. Phys. Lett. 94 102513
|
[13] |
Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003
|
[14] |
Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. 43 8036
|
[15] |
Kanomata T, Ishigaki H, Suzuki T, Yoshida H, Abe S and Kaneko T 1995 J. Magn. Magn. Mater. 140 131
|
[16] |
Wang J T, Wang D S, Chen C F, Nashima O, Kanomata T, Mizuseki H and Kawazoe Y 2006 Appl. Phys. Lett. 89 262504
|
[17] |
Ma S C, Wang D H, Xuan H C, Shen L J, Cao Q Q and Du Y W 2011 Chin. Phys. B 20 087502
|
[18] |
Li G J, Liu E K, Zhang H G, Zhang Y J, Chen J L, Wang W H, Zhang H W, Wu G H and Yu S Y 2013 J. Magn. Magn. Mater. 332 146
|
[19] |
SamantaT, DubenkoI, QuetzA, Stadler S and Ali N 2012 Appl. Phys. Lett. 101 242405
|
[20] |
Ma S C, Zheng Y X, Xuan H C, Shen L J, Cao Q Q, Wang D H and Du Y W 2012 J. Magn. Magn. Mater. 324 135
|
[21] |
Lin S, Tegus O, Brück E, Dagula W, Gortenmulder T J and Buschow K H J 2006 IEEE. Trans. Magn. 42 3776
|
[22] |
Zhang C L, Wang D H, Cao Q Q, Ma S C, Xuan H C and Du Y W 2010 J. Phys. D 43 205003
|
[23] |
Caron L, Trung N T and Brück E 2011 Phys. Rev. B 84 020414
|
[24] |
Arrott A 1957 Phys. Rev. 108 1394
|
[25] |
Amaral J S and Amaral V S 2009 Appl. Phys. Lett. 94 042506
|
[26] |
Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X and Shen B G 2007 Appl. Phys. Lett. 90 032507
|
[27] |
de Oliveira N A and von Ranke P J 2008 Phys. Rev. B 77 214439
|
[28] |
Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
|
[29] |
Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|