Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 128102    DOI: 10.1088/1674-1056/23/12/128102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Lg=100 nm T-shaped gate AlGaN/GaN HEMTs on Si substrates with non-planar source/drain regrowth of highly-doped n+-GaN layer by MOCVD

Huang Jie (黄杰)a, Li Ming (黎明)b, Tang Chak-Wah (邓泽华)b, Lau Kei-May (刘纪美)b
a College of Engineering and Technology, Southwest University, Chongqing 400715, China;
b Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
Abstract  

High-performance AlGaN/GaN high electron mobility transistors (HEMTs) grown on silicon substrates by metal–organic chemical-vapor deposition (MOCVD) with a selective non-planar n-type GaN source/drain (S/D) regrowth are reported. A device exhibited a non-alloyed Ohmic contact resistance of 0.209 Ω·mm and a comprehensive transconductance (gm) of 247 mS/mm. The current gain cutoff frequency fT and maximum oscillation frequency fMAX of 100-nm HEMT with S/D regrowth were measured to be 65 GHz and 69 GHz. Compared with those of the standard GaN HEMT on silicon substrate, the fT and fMAX is 50% and 52% higher, respectively.

Keywords:  GaN      HEMTs      S/D (S/D) regrowth      MOCVD  
Received:  06 March 2014      Revised:  31 July 2014      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
Fund: 

Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61401373), the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2013B004), and the Research Fund for the Doctoral Program of Southwest University, China (Grant No. SWU111030).

Corresponding Authors:  Huang Jie, Li Ming     E-mail:  jiehuang@swu.edu.cn;eeliming@sina.com

Cite this article: 

Huang Jie (黄杰), Li Ming (黎明), Tang Chak-Wah (邓泽华), Lau Kei-May (刘纪美) Lg=100 nm T-shaped gate AlGaN/GaN HEMTs on Si substrates with non-planar source/drain regrowth of highly-doped n+-GaN layer by MOCVD 2014 Chin. Phys. B 23 128102

[1]Nomoto K, Tajima T, Mishima T, Satoh M and Nakamura T 2007 IEEE Electron Dev. Lett. 28 939
[2]Kambayashi H, Niiyama Y, Ootomo S, Nomura T, Iwami M, Satoh Y, Kato S and Yoshida S 2007 IEEE Electron Dev. Lett. 28 1077
[3]Guo J, Guo W L and Cao Y 2012 IEEE Electron Dev. Lett. 33 525
[4]Guo J, Cao Y, Lian C X, Zimmermann T, Li G W, Verma J, Gao X, Guo S P, Paul S, Mark W and Xing H L 2011 Physica Status Solidi 208 1617
[5]Yue Y Z, Hu Z Y, Guo J and Rodriguez S 2012 IEEE Electron Dev. Lett. 33 988
[6]Shinohara K, Corrion A, Regan D, Milosavljevic I, Brown D, Burnham S, Willadsen P J, Butler C, Schmitz A, Wheeler D, Fung A and Micovic M 2010 IEEE International Electron Devices Meeting, December 6-8, 2010, San Franciso, CA, p. 301.1
[7]Pang L, Zheng Z, Seo H C, Chapman P, Krein P, Lee J H, Kim K W and Kim K 2010 18th Biennial University/Government/Industry Micro/Nano Symposium (UGIM), June 28, 2010, West Lafayette, Indiana, p. 1
[8]Singisetti U, Wistey M A, Burek G J, Baraskar A K, Cagnon J, Thibeault B, Gossard A C, Stemmer S, Rodwell M J W, Kim E, Shin B, McIntyre P C and Lee Y J 2009 IEEE IPRM, May 10-14, 2009 Newport Beach, CA, p. 120
[9]Takenaka M, Takeda K, Hoshii T, Tanemura T, Sugiyama M, Nakano Y and Takagi S 2009 IEEE IPRM, May 10-14, 2009, Newport Beach, CA, p. 111
[10]Liang P, Chan S H, Patrick C, Ilesanmi A and Kim K 2010 J. Election. Mater. 39 499
[11]Wang Y, Yu N S, Deng D M, Li M, Sun F, Lau K M 2010 Sci. China: Phys. Mech. & Astron. 53 1578
[12]Wang Y, Yu N S, Li M, Lau K M 2011 Chin. Phys. Lett. 28 057102
[13]Bahat-Treidel E, Hilt O, Brunner F, Wu J and Trankle G 2008 IEEE Trans. Electron. Dev. 55 3354
[14]Yagi S, Shimizu M, Okumura H, Ohashi H, Yano Y and Akutsu N 2007 J. Appl. Phys. 46 2309
[15]Song D, Liu J, Cheng Z, Tang W C, Lau K M and Chen K J 2007 Proceedings of the 19th International Symposium on Power Semiconductor Devices & IC's, May 27-31, 2007, Jeju, Island, p. 257
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[7] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[8] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[9] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[10] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[11] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[12] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[13] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[14] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[15] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
No Suggested Reading articles found!