INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism |
Hu Yin (胡音)a, He Da-Wei (何大伟)a, Wang Yong-Sheng (王永生)a, Duan Jia-Hua (段嘉华)a, Wang Su-Feng (王素凤)a, Fu Ming (富鸣)a, Wang Wen-Shuo (王闻硕)a b |
a Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China;
b Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstrasse 4, D-91058 Erlangen, Germany |
|
|
Abstract We report a facile method of synthesizing graphene quantum dots (GQDs) with tunable emission. The as-prepared GQDs each with a uniform lateral dimension of ca. 6 nm have fine solubility and high stability. The photoluminescence mechanism is further investigated based on the surfacestructure and the photoluminescence behaviors. Based on our discussion, the green fluorescence emission can be attributed to the oxygen functional groups, which could possess broad emission bands within the π–π* gap. This work is helpful to explain the vague fluorescent mechanism of GQDs, and the reported synthetic method is useful to prepare GQDs with controllable fluorescent colors.
|
Received: 07 May 2014
Revised: 23 June 2014
Accepted manuscript online:
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073, and 61077044), and the Beijing Natural Science Foundation, China (Grant No. 4132031). |
Corresponding Authors:
He Da-Wei, Wang Wen-Shuo
E-mail: dwhe@bjtu.edu.cn;wenshuo.wang@fau.de
|
Cite this article:
Hu Yin (胡音), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Duan Jia-Hua (段嘉华), Wang Su-Feng (王素凤), Fu Ming (富鸣), Wang Wen-Shuo (王闻硕) An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism 2014 Chin. Phys. B 23 128103
|
|
| [1] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
|
| [2] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
|
| [3] | Li D, Mueller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotech. 3 101
|
|
| [4] | Choucair M, Thordarson P and Stride J A 2009 Nat. Nanotech. 4 30
|
|
| [5] | Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N and A Geim 2008 Science 320 1308
|
|
| [6] | Muszynski R, Seger B and Kamat P V 2008 J. Phys. Chem. C 112 5263
|
|
| [7] | Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
|
| [8] | Wu H Q, Linghu C Y and Lü H M 2013 Chin. Phys. B 22 098106
|
|
| [9] | Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K and Geim A 2008 Science 320 356
|
|
| [10] | Zhuo S, Shao M and Lee S T 2012 ACS Nano 6 1059
|
|
| [11] | Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L and Qu L 2012 J. Am. Chem. Soc. 134 15
|
|
| [12] | Li Y, Hu Y, Zhao Y, Shi G Q, Deng L E, Hou Y B and Qu L T 2011 Adv. Mater. 23 776
|
|
| [13] | Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R and Chand S 2011 J. Am. Chem. Soc. 133 9960
|
|
| [14] | Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y and Yu W 2012 Adv. Funct. Mater. 22 4732
|
|
| [15] | Luk C, Tang L, Zhang W, Yu S, Teng K and Lau S 2012 J. Mater. Chem. 22 22378
|
|
| [16] | Liu R, Wu D, Feng X and Müllen K 2011 J. Am. Chem. Soc. 133 15221
|
|
| [17] | Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X and Chen G 2012 Carbon 50 4738
|
|
| [18] | Yan X, Cui X and Li L S 2010 J. Am. Chem. Soc. 132 5944
|
|
| [19] | Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nanotech. 6 247
|
|
| [20] | Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J and Ajayan P M 2012 Nano Lett. 12 844
|
|
| [21] | Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W and Chen Z 2012 J. Mater. Chem. 22 3314
|
|
| [22] | Pan D, Zhang J, Li Z and Wu M 2010 Adv. Mater. 22 734
|
|
| [23] | Yang Z, Li Z H, Xu M H, Ma Y J, Zhang J, Su Y J, Gao F, Wei H and Zhang L Y 2013 Nano-Micro. Lett. 5 247
|
|
| [24] | Xie M M, Su Y J, Lu X N, Zhang Y Z, Yang Z and Zhang Y F 2013 Mater. Lett. 93 161
|
|
| [25] | Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R and Okamoto A 2012 Adv. Mater. 24 5333
|
|
| [26] | Wang W, He D, Duan J, Fu M, Zhang X, Wu H, Hu Y and Wang Y 2014 Phys. Chem. Chem. Phys. 16 4504
|
|
| [27] | Hummers W S Jr and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
|
|
| [28] | Li J L, Kudin K N, McAllister M J, Prud'homme R K, Aksay I A and Car R 2006 Phys. Rev. Lett. 96 176101
|
|
| [29] | Li Z, Zhang W, Luo Y, Yang J and Hou J G 2009 J. Am. Chem. Soc. 131 6320
|
|
| [30] | Sahu S, Behera B, Maiti T K and Mohapatra S 2012 Chem. Commun. 48 8835
|
|
| [31] | Sun Y, Wang S, Li C, Luo P, Tao L, Wei Y and Shi G 2013 Phys. Chem. Chem. Phys. 15 9907
|
|
| [32] | Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R and Yang B 2012 RSC Adv. 2 2717
|
|
| [33] | Mei Q, Zhang K, Guan G, Liu B, Wang S and Zhang Z 2010 Chem. Commun. 46 7319
|
|
| [34] | Radovic L R and Bockrath B 2005 J. Am. Chem. Soc. 127 5917
|
|
| [35] | Li J S, Li Z B and Yao D X 2012 Chin. Phys. B 21 017302
|
|
| [36] | Bourissou D, Guerret O, Gabbai F P and Bertrand G 2000 Chem. Rev. 100 39
|
|
| [37] | Hoffmann R 1968 J. Am. Chem. Soc. 90 1475
|
|
| [38] | Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B and Pang D W 2011 Adv. Mater. 23 5801
|
|
| [39] | Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F and Hu R 2011 Chem. Commun. 47 6858
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|