Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 128101    DOI: 10.1088/1674-1056/23/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

Zhao Na (赵娜)a, Wen Chen-Yu (文宸宇)a, Zhang David Wei (张卫)a, Wu Dong-Ping (吴东平)a, Zhang Zhi-Bin (张志滨)b, Zhang Shi-Li (张世理)b
a State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China;
b Solid-State Electronics, The Ångström Laboratory, Uppsala University, P. O. Box 534, 75121 Uppsala, Sweden
Abstract  In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
Keywords:  microwave irradiation      solid-phase      liquid-phase      reduced graphene oxide  
Received:  24 February 2014      Revised:  21 June 2014      Accepted manuscript online: 
PACS:  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  81.05.U- (Carbon/carbon-based materials)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176090) and the National Science and Technology Project 02, China (Grant No. 2013ZX02303-004).
Corresponding Authors:  Wu Dong-Ping     E-mail:  dongpingwu@fudan.edu.cn

Cite this article: 

Zhao Na (赵娜), Wen Chen-Yu (文宸宇), Zhang David Wei (张卫), Wu Dong-Ping (吴东平), Zhang Zhi-Bin (张志滨), Zhang Shi-Li (张世理) Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide 2014 Chin. Phys. B 23 128101

[1]Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M and Kern K 2007 Nano Lett. 7 3499
[2]Gilje S, Han S, Wang M, Wang K L and Kaner R B 2007 Nano Lett. 7 3394
[3]Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4]Liang X, Fu Z and Chou S Y 2007 Nano Lett. 7 3840
[5]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[6]Watcharotone S, Dikin D A, Stankovich S, Piner R, Jung I, Dommett G H B, Evmenenko G, Wu S E, Chen S F, Liu C P, Nguyen S T and Ruoff R S 2007 Nano Lett. 7 1888
[7]Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[8]Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K and Novoselov K S 2008 Nano Lett. 8 1704
[9]Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, El-Shall M S, Al-Resayes S I and El-Azhary A A 2009 J. Mater. Chem. 19 3832
[10]Ambrosi A and Pumera M 2013 J. Phys. Chem. C 117 2053
[11]Li X S, Cai W W, An J H, Kim S Y, Nah J H, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee K S, Colombo L and Ruoff R S 2009 Science 324 1312
[12]Ren W C, Gao L B, Ma L P and Cheng H M 2011 New Carbon Mater. 26 71
[13]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[14]Fernández-Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A and Tascón J M D 2010 J. Phys. Chem. C 114 6426
[15]Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2011 Chin. Phys. B 20 128101
[16]Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
[17]Simpson C D, Mattersteig G, Martin K, Gherghel L, Bauer R E, Räder H J and Müllen K 2004 J. Am. Chem. Soc. 126 3139
[18]Zhu Y W, Murali S, Stoller M D, Velamakanni A, Piner R D and Ruoff R S 2010 Carbon 48 2118
[19]Paton K R and Windle A H 2008 Carbon 46 1935
[20]Imholt T J, Dyke C A, Hasslacher B, Perez J M, Price D W, Roberts J A, Scott J B, Wadhawan A, Ye Z and Tour J M 2003 Chem. Mater. 15 3969
[21]Park S H, Bak S M, Kim K H, Jegal J P, Lee S I, Lee J and Kim K B 2011 J. Mater. Chem. 21 680
[22]Zhu C Z, Guo S J, Fang Y X and Dong S J 2010 ACS Nano 4 2429
[23]Negra F D, Meneghetti M and Menna E 2003 Fullerenes, Nanotubes and Carbon Nanostructures 11 25
[24]Wang B G, Wang X B, Lou W J and Hao J C 2012 New J. Chem. 36 1684
[25]Gao W, Alemany L B, Ci L and Ajayan P M 2009 Nat. Chem. 1 403
[26]Chen W F and Yan L F 2010 Nanoscale 2 559
[27]Liao K H, Mittal A, Bose S, Leighton C, Mkhoyan K A and Macosko C W 2011 ACS Nano 5 1253
[28]Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L and Zhang F B 2008 Adv. Mater. 20 4490
[29]Glover A J, Cai M, Overdeep K R, Kranbuehl D E and Schniepp H C 2011 Macromolecules 44 9821
[30]Zangmeister C D 2010 Chem. Mater. 22 5625
[31]Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y and Lee Y H 2009 Adv. Func. Mater. 19 1987
[32]Williams G, Seger B and Kamat P V 2008 ACS Nano 2 1487
[33]Lei Z B, Lu L and Zhao X S 2012 Energy & Environ. Sci. 5 6391
[34]López V, Sundaram R S, Gómez-Navarro C, Olea D, Burghard M, Gómez-Herrero J, Zamora F and Kern K 2009 Adv. Mater. 21 4683
[35]Vivek P, Rajender S V 2010 Aqueous Microwave Assisted Chemistry Synthesis and Catalysis (Cambridge: Royal Society of Chemistry) pp. 4-8
[1] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[2] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[5] Preparation and photoelectric properties of cadmium sulfide quantum dots
Yue Gu(古月), Libin Tang(唐利斌), Xiaopeng Guo(郭小鹏), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(4): 047803.
[6] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[7] Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries
Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深). Chin. Phys. B, 2018, 27(6): 068101.
[8] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[9] Two-dimensional polyaniline nanosheets via liquid-phase exfoliation
Su-Na Fan(范苏娜), Ren-Wei Liu(刘仁威), Rui-Song Ma(马瑞松), Shan-Sheng Yu(于陕升), Ming Li(李明), Wei-Tao Zheng(郑伟涛), Shu-Xin Hu(胡书新). Chin. Phys. B, 2017, 26(4): 048102.
[10] Graphene resistive random memory–the promising memory device in next generation
Xue-Feng Wang(王雪峰), Hai-Ming Zhao(赵海明), Yi Yang(杨轶), Tian-Ling Ren(任天令). Chin. Phys. B, 2017, 26(3): 038501.
[11] Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol
Xiao Hong-Jun (肖红君), Shen Cheng-Min (申承民), Shi Xue-Zhao (时雪钊), Yang Su-Dong (杨苏东), Tian Yuan (田园), Lin Shao-Xiong (林少雄), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078109.
[12] Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide
Ali Badawi. Chin. Phys. B, 2015, 24(4): 047205.
[13] Complete coverage of reduced graphene oxide on silicon dioxide substrates
Huang Jingfeng, Melanie Larisika, Chen Hu, Steve Faulkner, Myra A. Nimmo, Christoph Nowak, Alfred Tok Iing Yoong. Chin. Phys. B, 2014, 23(8): 088104.
[14] Effects of rapid thermal annealing on the morphology and optical properity of ultrathin InSb film deposited on SiO2/Si substrate
Li Deng-Yue (李邓玥), Li Hong-Tao (李洪涛), Sun He-Hui (孙合辉), Zhao Lian-Cheng (赵连城 ). Chin. Phys. B, 2013, 22(2): 027802.
[15] Spectroscopic properties of Er/Ce-codoped La3Ga5SiO14
Wang Qing-Guo(王庆国), Su Liang-Bi(苏良碧), Li Hong-Jun(李红军), Zheng Li-He(郑丽和), Xu Xiao-Dong(徐晓东), Tang Hui-Li(唐慧丽), Jiang Da-Peng(姜大朋), Wu Feng(吴锋), and Xu Jun(徐军) . Chin. Phys. B, 2012, 21(2): 026101.
No Suggested Reading articles found!