Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127806    DOI: 10.1088/1674-1056/23/12/127806
RAPID COMMUNICATION Prev   Next  

Atomic origins of solid helium bubbles in tungsten

Xia Min (夏敏)a c, Guo Hong-Yan (郭洪燕)a c, Dai Yong (戴勇)b, Yan Qing-Zhi (燕青芝)a, Guo Li-Ping (郭立平)d, Li Tie-Cheng (李铁成)d, Qiao Yi (乔祎)a, Ge Chang-Chun (葛昌纯)a c
a Institute of Nuclear Materials, University of Science & Technology Beijing, Beijing 100083, China;
b Laboratory for Nuclear Materials, Paul Scherrer Institut, 5323 Villigen PSI, Switzerland;
c Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, Chengdu 610031, China;
d School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  

Solid helium bubbles were directly observed in the helium ion implanted tungsten (W), by different transmission electron microscopy (TEM) techniques at room temperature. The diameters of these solid helium bubbles range from 1 nm to 8 nm in diameter with the mean bubble size about 3 nm. The selected area electron diffraction (SAED) and fast Fourier transform (FFT) images revealed that solid helium bubbles possess body-centered cubic (bcc) structure with a lattice constant of 0.447 nm. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images further confirmed the existence of helium bubble in tungsten. The present findings provide an atomic level view of the microstructure evolution of helium in the materials, and revealed the existence of solid helium bubbles in materials.

Keywords:  solid helium bubble      atomic origins      tungsten      TEM      HAADF-STEM  
Received:  12 November 2014      Accepted manuscript online: 
PACS:  78.70-g  
  78.90.-g  
  78.90.+t (Other topics in optical properties, condensed matter spectroscopy and other interactions of particles and radiation with condensed matter)  
  21.90.+f (Other topics in nuclear structure)  
Fund: 

Project supported by the ITER-National Magnetic Confinement Fusion Program (Grant Nos. 2010GB109000, 2011GB108009, and 2014GB123000) and the National Natural Science Foundation of China (Grant No. 11075119).

Corresponding Authors:  Xia Min, Ge Chang-Chun     E-mail:  xmdsg@126.com;ccge@mater.ustb.edu.cn

Cite this article: 

Xia Min (夏敏), Guo Hong-Yan (郭洪燕), Dai Yong (戴勇), Yan Qing-Zhi (燕青芝), Guo Li-Ping (郭立平), Li Tie-Cheng (李铁成), Qiao Yi (乔祎), Ge Chang-Chun (葛昌纯) Atomic origins of solid helium bubbles in tungsten 2014 Chin. Phys. B 23 127806

[1]Johnson P B, Thomson R W and Mazey D J 1990 Nature 347 265
[2]Evans J H, van Veen A and Caspers L M 1981 Nature 291 310
[3]Jung P, Trinkaus H and Chen J 1999 Phys. Rev. Lett. 82 2709
[4]Maji S, Singh A and Nambissan P M G 2001 Phys. Lett. A 281 76
[5]Zhang L, Gaathon O, Bakhru S, Bakhru H, Zhu Y, Welch D, Osgood R M Jr and Ofan A 2010 Phys. Rev. B 82 104113
[6]Haghighat S M H, Lucas G and Schäublin R 2009 Europhys. Lett. 85 60008
[7]LeToullec R, Pinceaux J P, Mao H K, Hu J, Hemley R J and Loubeyre P 1993 Phys. Rev. Lett. 71 2272
[8]Mao H K, Hemley R J, Wu Y, Jephcoat A P, Finger L W, Zha C S and Bassett W A 1988 Phys. Rev. Lett. 60 2649
[9]Koči L, Ahuja R, Belonoshko A B and Johansson B 2007 J. Phys.: Condens. Matter 19 16206
[10]Schuch A F and Mills R L 1962 Phys. Rev. Lett. 8 469
[11]Ehrlich S N and Simmons R O 1987 J. Low Temp. Phys. 68 125
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[3] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[7] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[8] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[9] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[10] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[11] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[12] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[13] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[14] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[15] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
No Suggested Reading articles found!