Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030301    DOI: 10.1088/1674-1056/aca392
GENERAL Prev   Next  

Formalism of rotating-wave approximation in high-spin system with quadrupole interaction

Wen-Kui Ding(丁文魁)1,2,† and Xiao-Guang Wang(王晓光)1,3,‡
1 Key Laboratory of Optical Field Manipulation of Zhejiang Province and Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China;
3 Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Abstract  We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions. The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space. However, when the driving strength is relatively strong or the driving is off resonant, the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system. We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account. By estimating the operator fidelity of the time propagator, our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.
Keywords:  rotating wave approximation      quadrupole interaction      high-spin system  
Received:  02 June 2022      Revised:  09 September 2022      Accepted manuscript online:  17 November 2022
PACS:  03.65.-w (Quantum mechanics)  
  76.60.Gv (Quadrupole resonance)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304202 and 2017YFA0205700), the National Natural Science Foundation of China (Grant Nos. 11875231 and 11935012), and the Fundamental Research Funds for the Central Universities (Grant No. 2018FZA3005).
Corresponding Authors:  Wen-Kui Ding     E-mail:;

Cite this article: 

Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光) Formalism of rotating-wave approximation in high-spin system with quadrupole interaction 2023 Chin. Phys. B 32 030301

[1] Abragam A 1961 The principles of nuclear magnetism 32 (Oxford university press)
[2] Slichter C P 1996 Principles of Magnetic Resonance 3rd ed (Berlin: Springer-Verlag)
[3] Mehring M 2012 Principles of high resolution NMR in solids (Springer Science & Business Media)
[4] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[5] Allen L and Eberly J H 1987 Optical resonance and two-level atoms Vol. 28 (Courier Corporation)
[6] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195
[7] Scully M O and Zubairy M S 1997 Quantum optics (Cambridge: Cambridge University Press)
[8] Holstein T 1959 Ann. Phys. (N.Y.) 8 325
[9] Schmidt-Kaler F, Pfau T, Schmelcher P and Schleich W 2010 New J. Phys. 12 065014
[10] Rabi I I 1937 Phys. Rev. 51 652
[11] Bloch F and Siegert A 1940 Phys. Rev. 57 522
[12] Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516
[13] Barata J C A and Wreszinski W F 2000 Phys. Rev. Lett. 84 2112
[14] Lü Z and Zheng H 2012 Phys. Rev. A 86 023831
[15] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[16] Irish E K, Gea-Banacloche J, Martin I and Schwab K C 2005 Phys. Rev. B 72 195410
[17] Irish E K 2007 Phys. Rev. Lett. 99 173601
[18] Hausinger J and Grifoni M 2010 Phys. Rev. A 81 022117
[19] Nielsen M A and Chuang I 2002 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[20] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[21] Lee S Y, Niethammer M and Wrachtrup J 2015 Phys. Rev. B 92 115201
[22] Rosskopf T, Zopes J, Boss J M and Degen C L 2017 npj Quantum Inf. 3 33
[23] Wiseman H M and Milburn G J 2009 Quantum measurement and control (Cambridge: Cambridge University Press)
[24] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037
[25] Cohen M and Reif F 1957 Quadrupole effects in nuclear magnetic resonance studies of solids Solid state physics vol. 5 (Elsevier) pp. 321-438
[26] Fuchs G, Dobrovitski V, Toyli D, Heremans F and Awschalom D 2009 Science 326 1520
[27] Mizuochi N, Yamasaki S, Takizawa H, Morishita N, Ohshima T, Itoh H and Isoya J 2002 Phys. Rev. B 66 235202
[28] Salvatori G, Mandarino A and Paris M G A 2014 Phys. Rev. A 90 022111
[29] Ma J and Wang X 2009 Phys. Rev. A 80 012318
[30] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[31] Leggett A J 2001 Rev. Mod. Phys. 73 307
[32] Boixo S, Datta A, Davis M J, Flammia S T, Shaji A and Caves C M 2008 Phys. Rev. Lett. 101 040403
[33] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C 2013 Phys. Rep. 528 1
[34] Rabi I I, Ramsey N F and Schwinger J 1954 Rev. Mod. Phys. 26 167
[35] Landau L D and Lifshitz E M 2013 Quantum mechanics: non-relativistic theory Vol. 3 (Elsevier)
[36] Bloom M, Hahn E L and Herzog B 1955 Phys. Rev. 97 1699
[37] Wang X, Sun Z and Wang Z D 2009 Phys. Rev. A 79 012105
[38] Sakurai J and Napolitano J 2017 Modern Quantum Mechanics (Cambridge: Cambridge University Press)
[39] Lee S Y, Niethammer M and Wrachtrup J 2015 Phys. Rev. B 92 115201
[40] Rams M M, Sierant P, Dutta O, Horodecki P and Zakrzewski J 2018 Phys. Rev. X 8 021022
[41] Pang S and Brun T A 2014 Phys. Rev. A 90 022117
[42] Liu J, Jing X X and Wang X 2015 Sci. Rep. 5 8565
[43] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[44] Ma J, Wang X, Sun C and Nori F 2011 Phys. Rep. 509 89
[1] Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2019, 28(6): 060303.
[2] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[3] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[4] Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation
Kang Guo-Dong(康国栋), Fang Mao-Fa(方卯发), Ouyang Xi-Cheng(欧阳锡城), and Deng Xiao-Juan(邓小娟). Chin. Phys. B, 2010, 19(11): 110303.
No Suggested Reading articles found!