CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multi-band circular polarizer based on a twisted triplesplit-ring resonator |
Wu Song (吴松)a b, Huang Xiao-Jun (黄晓俊)a c, Xiao Bo-Xun (肖柏勋)d, Jin Yan (金彦)b, Yang He-Lin (杨河林)a |
a College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China;
b Wuhan Engineering Science and Technology Institute, Wuhan 430019, China;
c Department of Physics, Kashgar Teachers College, Kashgar 844000, China;
d Engineering Geophysical Research Center, Yangtze University, Jingzhou 434023, China |
|
|
Abstract A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well.
|
Received: 06 June 2014
Revised: 11 August 2014
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.25.Ja
|
(Polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41474117) and the Special Funds for Development Scientific Research Unit Projects of Wuhan, China (Grant No. 2013BJ004). |
Corresponding Authors:
He-Lin
E-mail: emyang@mail.ccnu.edu.cn
|
Cite this article:
Wu Song (吴松), Huang Xiao-Jun (黄晓俊), Xiao Bo-Xun (肖柏勋), Jin Yan (金彦), Yang He-Lin (杨河林) Multi-band circular polarizer based on a twisted triplesplit-ring resonator 2014 Chin. Phys. B 23 127805
|
|
| [1] | Shelby R A, Smith D R and Schultz S 2001 Science 292 77
|
|
| [2] | Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
|
|
| [3] | He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J and Zhou L 2014 Chin. Phys. B 23 047808
|
|
| [4] | Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L and Zhang H W 2014 Chin. Phys. B 23 047803
|
|
| [5] | Pendry J B 2000 Phys. Rev. Lett. 85 3966
|
|
| [6] | Decker M, Klein M W, Wegener M and Linden S 2007 Opt. Lett. 32 856
|
|
| [7] | Plum E, Fedotov V A and Zheludev N I 2008 Appl. Phys. Lett. 93 191911
|
|
| [8] | Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M and Zheludev N I 2009 Phys. Rev. B 79 035407
|
|
| [9] | Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Express 19 14290
|
|
| [10] | Ye Y and He S 2010 Appl. Phys. Lett. 96 203501
|
|
| [11] | Xie L Y, Yang H L, Huang X J and Li Z J 2013 Prog. Electromagn. Res. 141 645
|
|
| [12] | Ma X L, Huang C, Pu M, Wang Y Q, Zhao Z Y, Wang C T and Luo X G 2012 Appl. Phys. Lett. 101 161901
|
|
| [13] | Cheng Z Z, Cheng Y Z and Fang C H 2014 J. Electromagn. Waves Appl. 28 485
|
|
| [14] | Li S, Li J Q and Cao Y S 2013 Chin. Phys. B 22 117806
|
|
| [15] | Li Z, Zhao R, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E and Soukoulis C M 2010 Appl. Phys. Lett. 97 081901
|
|
| [16] | Zhang S, Park Y S, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901
|
|
| [17] | Zhou J, Dong J, Wang B, Koschny T, Kafesaki M and Soukoulis C M 2009 Phys. Rev. B 79 121104
|
|
| [18] | Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Lett. 36 1653
|
|
| [19] | Zheludev N I, Plum E and Fedotov V A 2011 Appl. Phys. Lett. 99 171915
|
|
| [20] | Ye Y Q and He S L 2010 Appl. Phys. Lett. 96 203501
|
|
| [21] | Li S X, Yang Z Y, Wang J and Zhao M 2011 J. Opt. Soc. Am. A 28 19
|
|
| [22] | Zhao Y, Belkin M A and Alu A 2012 Nat. Commun. 3 870
|
|
| [23] | Yang Z Y, Zhao M, Xie P X, Wu L, Lu Z Q and Zhang P 2012 IEEE Photon. Technol. Lett. 24 1708
|
|
| [24] | Yan S and Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
|
|
| [25] | Ziolkowski R W and Erentok A 2006 IEEE Trans. Anten. Propag. 54 2113
|
|
| [26] | Ye Y Q, Li X, Zhuang F and Chang S W 2011 Appl. Phys. Lett. 99 031111
|
|
| [27] | Zhu W R, Rukhlenko I D, Xiao F J and Premaratne M 2014 J. Appl. Phys. 115 143101
|
|
| [28] | Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Appl. Phys. A 111 209
|
|
| [29] | Li M H, Liu S Y, Guo L Y, Lin H, Yang H L and Xiao B X 2013 Opt. Commun. 295 262
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|