Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝)1, Lun Ji(纪伦)2,3, Aiqing Zhu(祝爱卿)2,3, and Yifa Tang(唐贻发)2,3,†
1 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; 2 LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit, K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for two non-canonical Hamiltonian systems. Numerical tests show that the proposed methods exhibit good numerical performance in preserving the phase orbit and the energy of the system over long time, whereas higher order Runge-Kutta methods do not preserve these properties. Numerical tests also show that the K-symplectic methods exhibit better efficiency than that of the same order implicit symplectic, explicit and implicit symplectic methods for the original nonseparable non-canonical systems. On the other hand, the fourth order K-symplectic method is more efficient than the fourth order Yoshida's method, the optimized partitioned Runge-Kutta and Runge-Kutta-Nyström explicit K-symplectic methods for the extended phase space Hamiltonians, but less efficient than the the optimized partitioned Runge-Kutta and Runge-Kutta-Nyström extended phase space symplectic-like methods with the midpoint permutation.
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发) Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems 2023 Chin. Phys. B 32 020204
[1] Hairer E, Lubich Ch and Wanner G 2002 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Berlin Heidelberg: Springer-Verlag) [2] Brugnano L, Zhang C J and Li D F 2018 Commun. Nonlinear Sci. Numer. Simulat.60 33 [3] Tang Y F, Pérez-García V and Vázquez L 1997 Appl. Math. Comput.82 17 [4] Tang Y F, Cao J W, Liu X T and Sun Y C 2007 J. Phy. A-Math. Theor.40 2425 [5] Vakhnenko O O 2002 J. Math. Phys.43 2587 [6] He Y, Zhou Z Q, Sun Y J, Liu J and Qin H 2017 Phys. Lett. A381 568 [7] Zhang R L, Wang Y L, He Y, et al. 2018 Phys. Plasmas25 022117 [8] Littlejohn R 1979 J. Math. Phys.20 2445 [9] Qin H, Guan X and Tang W 2009 Phys. Plasmas16 042510 [10] Zhang R L, Liu J, Tang Y F, et al. 2014 Phys. Plasma21 032504 [11] Marsden J and Weinstein A 1982 Physica D4 394 [12] Morrison P 1980 Phys. Lett. A80 383 [13] Morrison P and Green J 1980 Phys. Rev. Lett.45 790 [14] Arnold V 1978 Mathematical Methods of Classical Mechanics (Berlin Heidelberg: Springer-Verlag) [15] Feng K 1995 Collected Works of Feng Kang (II) (Beijing: National Defence Industry Press) [16] Feng K and Qin M Z 2009 Symplectic Geometric Algorithms for Hamiltonian System (Berlin Heidelberg: Springer-Verlag) [17] Sanz-Serna J M and Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman and Hall) [18] Wang L L and Fu J L 2016 Chin. Phys. B25 014501 [19] Channell P and Scovel C 1990 Nonlinearity3 231 [20] Feng K 1985 Proceedings of 1984 Beijing Symposium on Differential Geometry and Differential Equations (Beijing: Science Press) pp. 42-58 [21] Forest E and Ruth R 1990 Physica D43 105 [22] Sanz-Serna J M 1992 Acta Numer.1 243 [23] Yoshida H 1990 Phys. Lett. A150 262 [24] Feng K and Wang D L 1991 J. Comput. Math.9 86 [25] Wang Y, Sun W, Liu F Y and Wu X 2021 Astrophys. J.907 66 [26] Wu Y L and Wu X 2018 Int. J. Mod. Phys. C29 1850006 [27] Brown J D 2006 Phys. Rev. D73 024001 [28] Tsang D, Galley C R, Stein L C and Turner A 2015 Astrophys. J. Lett. 809 L9 [29] Kopáček O, Kovář J and Stuchlík Z 2010 Astrophys. J.722 1240 [30] Seyrich J and Lukes-Gerakopoulos G 2012 Phys. Rev. D86 124013 [31] Lubich C, Walther B and Brügmann B 2010 Phys. Rev. D81 104025 [32] Zhong S Y, Wu X, Liu S Q and Deng X F 2010 Phys. Rev. D82 124040 [33] Mei L J, Wu X and Liu F Y 2013 Eur. Phys. J. C73 2413 [34] Mei L Y, Ju M J, Wu X and Liu S Q 2013 Mon. Not. R. Astron. Soc.435 2246 [35] Hairer E and Wanner G 2010 Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Berlin Heidelberg: Springer-Verlag) [36] Wu X and Xie Y 2010 Phys. Rev. D81 084045 [37] Yang D Q, Cao W F, Zhou N Y, Zhang H X, Liu W F and Wu X 2022 Universe8 320 [38] Zhang H X, Zhou N Y, Liu W F and Wu X 2021 Universe7 488 [39] Zhou N Y, Zhang H X, Liu W F and Wu X 2022 Astrophys. J.927 160 [40] Wang Y, Sun W, Liu F Y and Wu X 2021 Astrophys. J.909 22 [41] Wang Y, Sun W, Liu F Y and Wu X 2021 Astrophys. J. Suppl. S.254 8 [42] Zhang H X, Zhou N Y, Liu W F and Wu X 2022 Gen. Relat. Gravit.54 110 [43] Sun W, Wang Y, Liu F Y and Wu X 2021 Eur. Phys. J. C81 785 [44] Sun X, Wu X, Wang Y, Deng C, Liu B R and Liang E W 2021 Universe7 410 [45] Wu X, Wang Y, Sun W and Liu F Y 2021 Astrophys. J.914 63 [46] Blanes S and Moan P C 2001 J. Comput. Phys.170 205 [47] Mclachlan R I and Quispel G 2002 Acta Numer.11 341 [48] Zhu B B, Zhang R L, Tang Y F, et al. 2016 J. Comput. Phys.322 387 [49] Zhu B B, Zhang R L, Tang Y F and Zhang Y H 2019 Numer. Algorithms81 1485 [50] Pihajoki P 2015 Celest. Mech. Dyn. Astr.121 211 [51] Liu L, Wu X, Liu F Y and Huang G Q 2016 Mon. Not. R. Astron. Soc.459 1968 [52] Luo J J, Wu X, Huang G Q and Liu F Y 2017 Astrophys. J.834 64 [53] Liu L, Wu X and Huang G Q 2017 Gen. Relat. Gravit.49 28 [54] Li D and Wu X 2017 Mon. Not. R. Astron. Soc.469 3031 [55] Li D and Wu X 2019 Eur. Phys. J. Plus134 96 [56] Pan G F, Wu X and Liang E W 2021 Phys. Rev. D104 044055 [57] Tao M L 2016 Phys. Rev. E94 043303 [58] Jayawardana B and Ohsawa T 2023 Math. Comput.92 251 [59] Ohsawa T 2022 arXiv: 2208.10546 [60] Kaneko Y 2015 Phys. Plasmas22 092120 [61] Butcher J C 1964 Math. Comput.18 50 [62] Butcher J C 1969 Conference on the numerical solution of differential equations, Lecture Notes in Math., June 23-27, 1969, Dundee, Scotland, pp. 133-139 [63] Strang G 1968 Siam J. Numer. Anal.5 506 [64] Zhu B B, Ji L, Zhu A Q and Tang Y F 2022 Commun. Comput. Phys.32 1129 [65] He Y, Sun Y J, Qin H and Liu J 2016 Phys. Plasmas23 092108 [66] Bacchini F, Ripperda B, Chen A Y and Sironi L 2018 Astrophys. J. Suppl. S.237 6 [67] Hu S Y, Wu X, Huang G Q and Liang E W 2019 Astrophys. J.887 191 [68] Hu S Y, Wu X and Liang E W 2021 Astrophys. J. Suppl. S.253 55 [69] Hu S Y, Wu X and Liang E W 2021 Astrophys. J. Suppl. S.257 40 [70] Zhang H, Song S H, Chen X D and Zhou W E 2014 Chin. Phys. B23 070208 [71] McLachlan R I 1995 SIAM J. Sci. Comput.16 151 [72] Hairer E, Norsett S P and Wanner G 1987 Solving Ordinary Differential Equation I: Nonstiff Problems (Berlin Heidelberg: Springer-Verlag) [73] Blanes S and Moan P C 2002 J. Comput. Appl. Math.142 313 [74] Liu G T 2006 Chin. Phys.15 2500 [75] Zheng C L, Zhang J F, Sheng Z M and Huang W H 2003 Chin. Phys.12 11 [76] Fu H, Zhou W E, Qian X, Song S H and Zhang L Y 2016 Chin. Phys. B25 110201
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.