Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀)1, Chuang Li(李闯)2,†, Jiandong Zhang(张建东)3, Ying Dong(董莹)2, and Huizhu Hu(胡慧珠)1,2,‡
1 State Key Laboratory of Modern Optical Instrumentation&College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; 2 Research Center for Quantum Sensing, Zhejiang Laboratory, Hangzhou 311121, China; 3 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
Abstract We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity. The mechanical oscillator and the atom are effectively coupled to each other through the cavity photons as a bus. By adjusting the driving lasers, we can conveniently switch the phonon-atom coupling between Jaynes-Cummings (JC) and anti-JC forms, which can be used to manipulate the motional states of the mechanical oscillator. As an application, we prepare a superposition state of the mechanical oscillator via the effective phonon-atom interaction and investigate the effects of dissipation on the state generation.
Fund: We thank Xiang Lv and Chenrong Liu for their useful discussions. This work is supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ22A040010) and the Major Scientific Research Project of Zhejiang Lab (Grant No. 2019 MB0AD01).
Corresponding Authors:
Chuang Li, Huizhu Hu
E-mail: lic@zhejianglab.com;huhuizhu2000@zju.edu.cn
Cite this article:
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠) Tunable phonon-atom interaction in a hybrid optomechanical system 2023 Chin. Phys. B 32 044213
[1] Ashkin A and Dziedzic J 1971 Appl. Phys. Lett.19 283 [2] Ashkin A and Dziedzic J 1976 Appl. Phys. Lett.28 333 [3] Ashkin A and Dziedzic J 1977 Appl. Phys. Lett.30 202 [4] Ashkin A, Dziedzic J M and Yamane T 1987 Nature330 769 [5] Ashkin A and Dziedzic J M 1987 Science235 1517 [6] Fazal F M and Block S M 2011 Nat. Photon.5 318 [7] Dholakia K and Vižmár T 2011 Nat. Photon.5 335 [8] Padgett M and Bowman R 2011 Nat. Photon.5 343 [9] Maragó O M, Jones P H, Gucciardi P G, Volpe G and Ferrari A C 2013 Nat. Nanotech.8 807 [10] Ranjit G, Atherton D P, Stutz J H, Cunningham M and Geraci A A 2015 Phys. Rev. A91 051805 [11] Ranjit G, Cunningham M, Casey K and Geraci A A 2016 Phys. Rev. A93 053801 [12] Hempston D, Vovrosh J, Toroš M, Winstone G, Rashid M and Ulbricht H 2017 Appl. Phys. Lett.111 133111 [13] Hebestreit E, Frimmer M, Reimann R and Novotny L 2018 Phys. Rev. Lett.121 063602 [14] Blakemore C P, Rider A D, Roy S, Wang Q, Kawasaki A and Gratta G 2019 Phys. Rev. A99 023816 [15] Li T, Kheifets S, Medellin D and Raizen M G 2010 Science328 1673 [16] Li T and Raizen M G 2013 Annalen der Physik525 281 [17] Gieseler J, Novotny L and Quidant R 2013 Nat. Phys.9 806 [18] Mahajan S, Aggarwal N, Bhattacherjee A B, et al. 2013 Chin. Phys. B23 020315 [19] Gieseler J, Quidant R, Dellago C and Novotny L 2014 Nat. Nanotech.9 358 [20] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett.116 243601 [21] Rondin L, Gieseler J, Ricci F, Quidant R, Dellago C and Novotny L 2017 Nat. Nanotech.12 1130 [22] Arvanitaki A and Geraci A A 2013 Phys. Rev. Lett.110 071105 [23] Nie W, Lan Y, Li Y and Zhu S 2014 Sci. China Phys. Mech. Astron.57 2276 [24] Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Chin. Phys. B28 014202 [25] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B22 114213 [26] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys.86 1391 [27] Liu Y L, Wang C, Zhang J and Liu Y X 2018 Chin. Phys. B27 024204 [28] Kumar P, Biswas T, Feliz K, Kanamoto R, Chang M S, Jha A K and Bhattacharya M 2021 Phys. Rev. Lett.127 113601 [29] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science367 892 [30] Magrini L, Rosenzweig P, Bach C, Deutschmann-Olek A, Hofer S G, Hong S, Kiesel N, Kugi A and Aspelmeyer M 2021 Nature595 373 [31] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature595 378 [32] Moore D C and Geraci A A 2021 Quantum Science and Technology6 014008 [33] Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, Quidant R and Romero-Isart O 2021 Science374 eabg3027 [34] Yin Z q, Li T, Zhang X and Duan L 2013 Phys. Rev. A88 033614 [35] Bergholm V, Wieczorek W, Schulte-Herbrüggen T and Keyl M 2019 Quantum Science and Technology4 034001 [36] Zhang W, Qin L G, Tian L J and Wang Z Y 2021 Chin. Phys. B30 097203 [37] Bothner D, Rodrigues I and Steele G 2021 Nat. Phys.17 85 [38] Liu Y Y, Zhang Z M, Liu J H, Wang J D and Yu Y F 2022 Chin. Phys. B31 094203 [39] Zhang S, Li T, Duan Q H, Zhang J Q and Bao W S 2021 Chin. Phys. B30 023701 [40] Chang D E, Regal C, Papp S, Wilson D, Ye J, Painter O, Kimble H J and Zoller P 2010 Proc. Natl. Acad. Sci. USA107 1005 [41] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A77 033804 [42] Li C, Li Y, Hu H and Dong Y 2022 Sci. China Phys. Mech. Astron.65 1 [43] Boca A, Miller R, Birnbaum K, Boozer A, McKeever J and Kimble H 2004 Phys. Rev. Lett.93 233603 [44] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N and Aspelmeyer M 2020 Quantum Science and Technology5 025006 [45] Reiter F and Sorensen A S 2012 Phys. Rev. A85 032111 [46] James D and Jerke J 2007 Canadian Journal of Physics85 625
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.