Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034212    DOI: 10.1088/1674-1056/acaf2a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method

Xiaoguang Ma(马晓光)1,2,3, Fangzhen Hu(胡芳珍)2,3, Xi Chen(陈希)2,3, Yimeng Wang(王艺盟)2,3, Xiaojian Hao(郝晓剑)1,†, Min Gu(顾敏)2,3,‡, and Qiming Zhang(张启明)2,3,§
1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China;
2 Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Nonlinear materials have gained wide interest as saturable absorbers and pulse compression for pulsed laser applications due to their unique optical properties. This work investigates the third-order nonlinear phenomenon of tungsten trioxide (WO$_{3}$) thin films. The giant nonlinear absorption and nonlinear refractive index of WO$_{3}$ thin films were characterized by $Z$-scan method at 800 nm. We experimentally observed the giant saturable absorption (SA) and nonlinear refractive index of WO$_{3}$ thin films prepared by the seedless layer hydrothermal method, with SA coefficient being as high as $-2.59\times 10 ^{5}$ cm$\cdot$GW$^{-1}$. The SA coefficient is at least one order of magnitude larger than those of the conventional semiconductors. The nonlinear refractive index $n_{2}$ of WO$_{3}$ film has been observed for the first time in recent studies and the corresponding coefficient can be up to 1.793 cm$^{2}\cdot$GW$^{-1}$. The large third-order nonlinear optical (NLO) response enables WO$_{3}$ thin films to be promising candidates for optoelectronic and photonic applications in the near-infrared domain.
Keywords:  tungsten trioxide      Z-scan      saturable absorption  
Received:  07 September 2022      Revised:  14 December 2022      Accepted manuscript online:  30 December 2022
PACS:  42.65.-k (Nonlinear optics)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: We would like to acknowledge the support from the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1100500), the Shanghai Municipal Science and Technology Major Project, the Shanghai Frontiers Science Center Program (2021-2025 No. 20), the National Key Research and Development Program of China (Grant No. 2021YFB2802000), the National Natural Science Foundation of China (Grant No. 61975123), the National Natural Science Foundation of China (Grant No. 52075504), and Fund for Shanxi ‘1331Project’ Key Subject Construction and Shanxi Doctor Innovation Project (2019).
Corresponding Authors:  Xiaojian Hao, Min Gu, Qiming Zhang     E-mail:  haoxiaojian@nuc.edu.cn;gumin@usst.edu.cn;qimingzhang@usst.edu.cn

Cite this article: 

Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明) Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method 2023 Chin. Phys. B 32 034212

[1] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[2] Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R and Hosono H 2017 Adv. Mater. 29 1700754
[3] Hayat A, Nevet A, Ginzburg P and Orenstein M 2011 Semicond. Sci. Technol. 26 083001
[4] Dong N N, Li Y X, Zhang S F, McEvoy N, Zhang X Y, Cui Y, Zhang L, Duesberg G S and Wang J 2016 Opt. Lett. 41 3936
[5] Dong N N, Li Y X, Zhang S F, McEvoy N, Gatensby R, Duesberg G S and Wang J 2018 ACS Photon. 5 1558
[6] Jia L N, Wu J Y, Yang T S, Jia B H and Moss D J 2020 ACS Appl. Nano Mater. 3 6876
[7] Wang Y D, Wang Y W, Chen K Q, Qi K, Xue T Y, Zhang H, He J and Xiao S 2020 ACS Nano 14 10492
[8] Guo J, Wang Z H, Shi R C, Zhang Y, He Z W, Gao L F, Wang R, Shu Y Q, Ma C Y, Ge Y Q, Song Y F, Fan D Y, Xu J L and Zhang H 2020 Adv. Opt. Mater. 8 2000067
[9] Demetriou G, Bookey H T, Biancalana F, Abraham E, Wang Y, Ji W and Kar A K 2016 Opt. Express 24 13033
[10] Wang Z Q, Cai B Y, Wan Z F, Zhang Y Y, Ma X G, Gu M and Zhang Q M 2022 Nanomaterials 12 1117
[11] Yang T S, Abdelwahab I, Lin H, Bao Y, Rong Tan S J, Fraser S, Loh K P and Jia B H 2018 ACS Photon. 5 4969
[12] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823
[13] Wang Y W, Huang G H, Mu H R, Lin S H, Chen J Z, Xiao S, Bao Q L and He J 2015 Appl. Phys. Lett. 107 091905
[14] Lee, S Y, Kim Y H, Cho S M, Kim G H, Kim T Y, Ryu H, Kim H N, Kang H B, Hwang C Y and Hwang C S 2017 Sci. Rep. 7 41152
[15] Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
[16] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[17] Zhang H, Lu, S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[18] Chen H, Liu T J, Su Z Q, Shang L and Wei G 2018 Nanoscale. Horiz. 3 74
[19] Wang Y W, Liu S, Yuan J, Wang P, Chen J Z, Li J B, Xiao S, Bao Q L, Gao Y L and He J 2016 Sci. Rep. 6 33070
[20] Li Y, Zhang Z and Zhu J H 2021 Opt. Mater. 119 111359
[21] Chen Z D, Wang Y G, Lu L, Lv R D, Wei L L, Liu S C, Wang J and Wang X 2018 Chin. Phys. B 27 084206
[22] Li Y C, Ge C, Wang P, Liu S, Ma X R, Wang B, Song H Y and Liu S B 2022 Chin. Phys. B 31 067102
[23] Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
[24] Huang D D, Zheng C, Li W, Guo Q H and Chen W Z 2019 Opt. Mater. 88 451
[25] Muller O and Gibot P 2019 Opt. Mater. 95 109220
[26] Ou J Z, Balendhran S, Field M R, McCulloch D G, Zoolfakar A S, Rani R A, Zhuiykov S, O'Mullaneb A P and Kalantar-zadeh K 2012 Nanoscale 4 5980
[27] Liu L, Layani M, Yellinek S, Kamyshny A, Ling H, Lee P S, Magdassi S and Mandler D 2014 J. Mater. Chem. A 2 16224
[28] Zhu T, Chong M N and Chan E S 2014 Chemsuschem 7 2974
[29] Lia C P, Lin F, Richards R M, Engtrakul C, Tenent R C and Wolden C A 2014 Sol. Energy Mater. Sol. Cells 121 163
[30] Patrocinio A O T, Paula L F, Paniago R M, Freitag J and Bahnemann D W 2014 ACS Appl. Mater. Interfaces 6 16859
[31] Sauvet K, Sauques L and Rougier A 2009 Sol. Energy Mater. Sol. Cells 93 2045
[32] Wang J M, Khoo E, Lee P S and Ma J 2009 J. Phys. Chem. C 113 9655
[33] Chen Z, Peng Y T, Liu F, Le Z Y, Zhu J, Shen G R, Zhang D Q, Wen M C, Xiao S N, Liu C P, Lu Y F and Li H X 2015 Nano Lett. 15 6802
[34] Ma D, Li T, Xu Z, Wang L and Wang J 2018 Sol. Energy Mater. Sol. Cells 177 51
[35] Li H, Hou R P, Sun Y H, Diao M J, Liang Y, Chen X, Huang Z P, Wang J, Humphrey M G, Yu Z Y and Zhang C 2021 Adv. Opt. Mater. 9 2002188
[36] Hou R P, Li H, Diao M J, Sun Y H, Liang Y, Yu Z Y, Huang Z P and Zhang C 2022 Nano Res. 15 326
[37] Goi E, Zhang Q M, Chen X, Luan H T and Gu M 2020 PhotoniX 1 3
[38] Chen M, Wan Z F, Dong H, Chen Q Y, Gu M and Zhang Q M 2022 Natl. Sci. Open 1 20220020
[39] Zhang Q M, Yu H Y, Barbiero M, Wang B K and Gu M 2019 Light: Sci. Appl. 8 42
[40] Pyper O, Kaschner A and Thomsen C 2002 Sol. Energy Mater. Sol. Cells 71 511
[41] Luo J Y, Zhou Y Y, Huang D, Zeng Q G and Wang Y 2012 Adv. Mater. Res. 529 69
[42] Chen X, Huang J W, Chen C D, Chen M L, Hu G H, Wang H Q, Dong N N and Wang J 2022 Adv. Opt. Mater. 10 2101963
[43] Zhai X P, Gao L F, Zhang H, Peng Y, Zhang X D, Wang Q and Zhang H L 2022 ACS Appl. Nano Mater. 5 1169
[44] Yu J, Kuang X F, Li J Z, Zhong J H, Zeng C, Cao L K, Liu Z W, Zeng Z X S, Luo Z Y, He T C, Pan A L and Liu Y P 2021 Nat. Commun. 12 1083
[45] Lin J M, Chen H L, Ma D T, Gong Y N, Li Z J, Li D L, Song Y F, Zhang F, Li J Q, Wang H C, Zhang Y P and Zhang H 2020 Nanoscale 12 23140
[46] Huang J W, Dong N N, Zhang S F, Sun Z Y, Zhang W H and Wang J 2017 ACS Photonics 4 3063
[47] Li G R, Liu J T, Wang F F, Nie H K, Wang R H, Yang K J, Zhang B T and He J L 2021 Adv. Mater. Interfaces 8 2001805
[48] Yu T T, Nie H K, Wang S P, Zhang B T, Zhao S Q, Wang Z M, Qiao J, Han B, He J L and Tao X T 2019 Adv. Opt. Mater. 8 1901490
[49] Pan H, Cao L H, Chu H W, Wang Y C, Zhao S Z, Li Y, Qi N, Sun Z L, Jiang X T, Wang R, Zhang H and Li D C 2019 ACS Appl. Mater. Interfaces 11 48281
[50] Ye C Y, Yang Z Q, Dong J H, Huang Y F, Song M M, Sa B S, Zheng J Y and Zhan H B 2021 Small 17 2103938
[51] Kumar S, Anija M, Kamaraju N, Vasu K S, Subrahmanyam K S, Sood A K and Rao C N R 2009 Appl. Phys. Lett. 95 191911
[52] Ma X G, Wang Y M, Hao X J, Gu M and Zhang Q M 2022 Adv. Mater. Interfaces 9 2200890
[1] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[2] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[3] Electronic and optical properties of TiO2 and its polymorphs by Z-scan method
S. Divya, V P N Nampoori, P Radhakrishnan, A Mujeeb. Chin. Phys. B, 2014, 23(8): 084203.
[4] Intensity and composition-dependent sign reversal of non-linearity in TiO2/CeO2 nanocomposites
S. Divya, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb. Chin. Phys. B, 2014, 23(3): 034209.
[5] Tailoring optical properties of TiO2 in silica glass for limiting applications
S. Divya, Indu Sebastian, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb. Chin. Phys. B, 2014, 23(3): 034210.
[6] Nonlinear optical properties of an azobenzene polymer
Zeng Yi (曾艺), Pan Zhi-Hua (潘志华), Zhao Fu-Li (赵付丽), Qin Mu (秦苜), Zhou Yan (周延), Wang Chang-Shun (王长顺). Chin. Phys. B, 2014, 23(2): 024212.
[7] Theory of Z-scan technique using Gaussian—Bessel beams with a phase object
Jin Xiao(金肖), Shui Min(税敏), Wang Yu-Xiao(王玉晓), Li Chang-Wei(李常伟), Yang Jun-Yi(杨俊义), Zhang Xue-Ru(张学如), Yang Kun(杨昆), and Song Ying-Lin(宋瑛林). Chin. Phys. B, 2010, 19(7): 074203.
[8] Defect and electrical properties of nanocrystalline tungsten trioxide
Yang Xin-Sheng (羊新胜), Wang Yu (王豫), Dong Liang (董亮), Qi Li-Zhen (齐立桢), Zhang Feng (张锋). Chin. Phys. B, 2004, 13(9): 1516-1519.
[9] OPTICAL LIMITING EFFECT IN TWO PHTHALOCYANINES OBSERVED BY PICOSECOND PULSED LASER
Qu Shi-liang (曲士良), Chen Yu (陈煜), Song Ying-lin (宋瑛林), Chen Guo-ping (陈国平), Wang Yu-xiao (王玉晓), Zhang Xue-ru (张学如), Liu Shu-tian (刘树田), Wang Duo-yuan (王夺元). Chin. Phys. B, 2001, 10(12): 1139-1143.
No Suggested Reading articles found!