ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method |
Xiaoguang Ma(马晓光)1,2,3, Fangzhen Hu(胡芳珍)2,3, Xi Chen(陈希)2,3, Yimeng Wang(王艺盟)2,3, Xiaojian Hao(郝晓剑)1,†, Min Gu(顾敏)2,3,‡, and Qiming Zhang(张启明)2,3,§ |
1 Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China; 2 Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China; 3 Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract Nonlinear materials have gained wide interest as saturable absorbers and pulse compression for pulsed laser applications due to their unique optical properties. This work investigates the third-order nonlinear phenomenon of tungsten trioxide (WO$_{3}$) thin films. The giant nonlinear absorption and nonlinear refractive index of WO$_{3}$ thin films were characterized by $Z$-scan method at 800 nm. We experimentally observed the giant saturable absorption (SA) and nonlinear refractive index of WO$_{3}$ thin films prepared by the seedless layer hydrothermal method, with SA coefficient being as high as $-2.59\times 10 ^{5}$ cm$\cdot$GW$^{-1}$. The SA coefficient is at least one order of magnitude larger than those of the conventional semiconductors. The nonlinear refractive index $n_{2}$ of WO$_{3}$ film has been observed for the first time in recent studies and the corresponding coefficient can be up to 1.793 cm$^{2}\cdot$GW$^{-1}$. The large third-order nonlinear optical (NLO) response enables WO$_{3}$ thin films to be promising candidates for optoelectronic and photonic applications in the near-infrared domain.
|
Received: 07 September 2022
Revised: 14 December 2022
Accepted manuscript online: 30 December 2022
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Fund: We would like to acknowledge the support from the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1100500), the Shanghai Municipal Science and Technology Major Project, the Shanghai Frontiers Science Center Program (2021-2025 No. 20), the National Key Research and Development Program of China (Grant No. 2021YFB2802000), the National Natural Science Foundation of China (Grant No. 61975123), the National Natural Science Foundation of China (Grant No. 52075504), and Fund for Shanxi ‘1331Project’ Key Subject Construction and Shanxi Doctor Innovation Project (2019). |
Corresponding Authors:
Xiaojian Hao, Min Gu, Qiming Zhang
E-mail: haoxiaojian@nuc.edu.cn;gumin@usst.edu.cn;qimingzhang@usst.edu.cn
|
Cite this article:
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明) Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method 2023 Chin. Phys. B 32 034212
|
[1] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [2] Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R and Hosono H 2017 Adv. Mater. 29 1700754 [3] Hayat A, Nevet A, Ginzburg P and Orenstein M 2011 Semicond. Sci. Technol. 26 083001 [4] Dong N N, Li Y X, Zhang S F, McEvoy N, Zhang X Y, Cui Y, Zhang L, Duesberg G S and Wang J 2016 Opt. Lett. 41 3936 [5] Dong N N, Li Y X, Zhang S F, McEvoy N, Gatensby R, Duesberg G S and Wang J 2018 ACS Photon. 5 1558 [6] Jia L N, Wu J Y, Yang T S, Jia B H and Moss D J 2020 ACS Appl. Nano Mater. 3 6876 [7] Wang Y D, Wang Y W, Chen K Q, Qi K, Xue T Y, Zhang H, He J and Xiao S 2020 ACS Nano 14 10492 [8] Guo J, Wang Z H, Shi R C, Zhang Y, He Z W, Gao L F, Wang R, Shu Y Q, Ma C Y, Ge Y Q, Song Y F, Fan D Y, Xu J L and Zhang H 2020 Adv. Opt. Mater. 8 2000067 [9] Demetriou G, Bookey H T, Biancalana F, Abraham E, Wang Y, Ji W and Kar A K 2016 Opt. Express 24 13033 [10] Wang Z Q, Cai B Y, Wan Z F, Zhang Y Y, Ma X G, Gu M and Zhang Q M 2022 Nanomaterials 12 1117 [11] Yang T S, Abdelwahab I, Lin H, Bao Y, Rong Tan S J, Fraser S, Loh K P and Jia B H 2018 ACS Photon. 5 4969 [12] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823 [13] Wang Y W, Huang G H, Mu H R, Lin S H, Chen J Z, Xiao S, Bao Q L and He J 2015 Appl. Phys. Lett. 107 091905 [14] Lee, S Y, Kim Y H, Cho S M, Kim G H, Kim T Y, Ryu H, Kim H N, Kang H B, Hwang C Y and Hwang C S 2017 Sci. Rep. 7 41152 [15] Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411 [16] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 [17] Zhang H, Lu, S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249 [18] Chen H, Liu T J, Su Z Q, Shang L and Wei G 2018 Nanoscale. Horiz. 3 74 [19] Wang Y W, Liu S, Yuan J, Wang P, Chen J Z, Li J B, Xiao S, Bao Q L, Gao Y L and He J 2016 Sci. Rep. 6 33070 [20] Li Y, Zhang Z and Zhu J H 2021 Opt. Mater. 119 111359 [21] Chen Z D, Wang Y G, Lu L, Lv R D, Wei L L, Liu S C, Wang J and Wang X 2018 Chin. Phys. B 27 084206 [22] Li Y C, Ge C, Wang P, Liu S, Ma X R, Wang B, Song H Y and Liu S B 2022 Chin. Phys. B 31 067102 [23] Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215 [24] Huang D D, Zheng C, Li W, Guo Q H and Chen W Z 2019 Opt. Mater. 88 451 [25] Muller O and Gibot P 2019 Opt. Mater. 95 109220 [26] Ou J Z, Balendhran S, Field M R, McCulloch D G, Zoolfakar A S, Rani R A, Zhuiykov S, O'Mullaneb A P and Kalantar-zadeh K 2012 Nanoscale 4 5980 [27] Liu L, Layani M, Yellinek S, Kamyshny A, Ling H, Lee P S, Magdassi S and Mandler D 2014 J. Mater. Chem. A 2 16224 [28] Zhu T, Chong M N and Chan E S 2014 Chemsuschem 7 2974 [29] Lia C P, Lin F, Richards R M, Engtrakul C, Tenent R C and Wolden C A 2014 Sol. Energy Mater. Sol. Cells 121 163 [30] Patrocinio A O T, Paula L F, Paniago R M, Freitag J and Bahnemann D W 2014 ACS Appl. Mater. Interfaces 6 16859 [31] Sauvet K, Sauques L and Rougier A 2009 Sol. Energy Mater. Sol. Cells 93 2045 [32] Wang J M, Khoo E, Lee P S and Ma J 2009 J. Phys. Chem. C 113 9655 [33] Chen Z, Peng Y T, Liu F, Le Z Y, Zhu J, Shen G R, Zhang D Q, Wen M C, Xiao S N, Liu C P, Lu Y F and Li H X 2015 Nano Lett. 15 6802 [34] Ma D, Li T, Xu Z, Wang L and Wang J 2018 Sol. Energy Mater. Sol. Cells 177 51 [35] Li H, Hou R P, Sun Y H, Diao M J, Liang Y, Chen X, Huang Z P, Wang J, Humphrey M G, Yu Z Y and Zhang C 2021 Adv. Opt. Mater. 9 2002188 [36] Hou R P, Li H, Diao M J, Sun Y H, Liang Y, Yu Z Y, Huang Z P and Zhang C 2022 Nano Res. 15 326 [37] Goi E, Zhang Q M, Chen X, Luan H T and Gu M 2020 PhotoniX 1 3 [38] Chen M, Wan Z F, Dong H, Chen Q Y, Gu M and Zhang Q M 2022 Natl. Sci. Open 1 20220020 [39] Zhang Q M, Yu H Y, Barbiero M, Wang B K and Gu M 2019 Light: Sci. Appl. 8 42 [40] Pyper O, Kaschner A and Thomsen C 2002 Sol. Energy Mater. Sol. Cells 71 511 [41] Luo J Y, Zhou Y Y, Huang D, Zeng Q G and Wang Y 2012 Adv. Mater. Res. 529 69 [42] Chen X, Huang J W, Chen C D, Chen M L, Hu G H, Wang H Q, Dong N N and Wang J 2022 Adv. Opt. Mater. 10 2101963 [43] Zhai X P, Gao L F, Zhang H, Peng Y, Zhang X D, Wang Q and Zhang H L 2022 ACS Appl. Nano Mater. 5 1169 [44] Yu J, Kuang X F, Li J Z, Zhong J H, Zeng C, Cao L K, Liu Z W, Zeng Z X S, Luo Z Y, He T C, Pan A L and Liu Y P 2021 Nat. Commun. 12 1083 [45] Lin J M, Chen H L, Ma D T, Gong Y N, Li Z J, Li D L, Song Y F, Zhang F, Li J Q, Wang H C, Zhang Y P and Zhang H 2020 Nanoscale 12 23140 [46] Huang J W, Dong N N, Zhang S F, Sun Z Y, Zhang W H and Wang J 2017 ACS Photonics 4 3063 [47] Li G R, Liu J T, Wang F F, Nie H K, Wang R H, Yang K J, Zhang B T and He J L 2021 Adv. Mater. Interfaces 8 2001805 [48] Yu T T, Nie H K, Wang S P, Zhang B T, Zhao S Q, Wang Z M, Qiao J, Han B, He J L and Tao X T 2019 Adv. Opt. Mater. 8 1901490 [49] Pan H, Cao L H, Chu H W, Wang Y C, Zhao S Z, Li Y, Qi N, Sun Z L, Jiang X T, Wang R, Zhang H and Li D C 2019 ACS Appl. Mater. Interfaces 11 48281 [50] Ye C Y, Yang Z Q, Dong J H, Huang Y F, Song M M, Sa B S, Zheng J Y and Zhan H B 2021 Small 17 2103938 [51] Kumar S, Anija M, Kamaraju N, Vasu K S, Subrahmanyam K S, Sood A K and Rao C N R 2009 Appl. Phys. Lett. 95 191911 [52] Ma X G, Wang Y M, Hao X J, Gu M and Zhang Q M 2022 Adv. Mater. Interfaces 9 2200890 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|