Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 033201    DOI: 10.1088/1674-1056/acac0f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains

Chang-Tong Liang(梁畅通)1,2,3, Jing-Jing Zhang(张晶晶)1,2, and Peng-Cheng Li(李鹏程)1,2,†
1 Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
2 Key Laboratory of Intelligent Manufacturing Technology of the Ministry of Education, Shantou University, Shantou 515063, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Frequency-comb emission via high-order harmonic generation (HHG) provides an alternative method for the coherent vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation at ultrahigh repetition rates. In particular, the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics. Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains. We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG, leading to suppression and enhancement of frequency-comb emission. The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG. The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail. Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV-XUV regimes.
Keywords:  high-order harmonic generation      frequency comb      time-dependent Schrödinger equation      intense laser field systems  
Received:  30 September 2022      Revised:  24 November 2022      Accepted manuscript online:  16 December 2022
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074239 and 91850209), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2020A1515010927 and 2020ST084), the Fund from the Department of Education of Guangdong Province, China (Grant Nos. 2019KTSCX038 and 2020KCXTD012), and the Fund from Shantou University (Grant No. NTF18030).
Corresponding Authors:  Peng-Cheng Li     E-mail:  pchli@stu.edu.cn

Cite this article: 

Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程) Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains 2023 Chin. Phys. B 32 033201

[1] Picqué N and Hänsch T W 2019 Nat. Photon. 13 146
[2] Foltynowicz A, Ban T, Masłowski P, Adler F and Ye J 2011 Phys. Rev. Lett. 107 233002
[3] Bergevin J, Wu T H, Yeak J, Brumfield B E, Harilal S S, Phillips M C and Jones R J 2018 Nat. Commun. 9 1273
[4] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[5] Reichert J, Holzwarth R, Udem Th and Hänsch T W 1999 Opt. Commun. 172 59
[6] Diddams S A, Vahala K and Udem Th 2020 Science 369 6501
[7] Diddams S A, Jones D J, Ye J, Cundiff S T and Hall J L 2000 Phys. Rev. Lett. 84 5102
[8] Dai S Y, Li K Q, Zhai Y Y, Xia W, Wang Q, Xiong W, Qi X H and Chen X Z 2017 Chin. Phys. Lett. 34 013201
[9] Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M and Eikema K S E 2019 Phys. Rev. Lett. 123 143001
[10] Coddington I, Newbury N and Swann W 2016 Optica 3 414
[11] Hernández-García C, Pérez-Hernández J A, Popmintchev T, Murnane M M, Kapteyn H C, Jaron-Becker A, Becker A and Plaja L 2013 Phys. Rev. Lett. 111 033002
[12] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565
[13] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801
[14] Altmann R K, Galtier S, Dreissen L S and Eikema K S E 2016 Phys. Rev. Lett. 117 173201
[15] Matveev A, Parthey C G, Predehl K, Alnis J, Beyer A, Holzwarth R, Udem Th, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Grosche G, Terra O, Legero Th, Schnatz H, Weyers S, Altschul B and Hänsch T W 2013 Phys. Rev. Lett. 110 230801
[16] Hölsch N, Beyer M, Salumbides E J, Eikema K S E, Ubachs W, Jungen C and Merkt F 2019 Phys. Rev. Lett. 122 103002
[17] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[18] Chini M, Zhao K and Chang Z H 2014 Nat. Photon. 8 178
[19] Carrera J J, Son S K and Chu S I 2008 Phys. Rev. A 77 031401R
[20] Tudorovskaya M and Lein M 2017 Phys. Rev. A 95 043418
[21] Li P C, Sheu Y L, Laughlin C and Chu S I 2015 Nat. Commun. 6 7178
[22] Carrera J J and Chu S I 2009 Phys. Rev. A 79, 063410
[23] Zhao D, Li F L and Chu S I 2013 Phys. Rev. A 87 043407
[24] Son S K and Chu S I 2008 Phys. Rev. A 77 063406
[25] Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2008 Nature 482 68
[26] Lee J, Carlson D R and Jones R J 2008 Opt. Express 19 23315
[27] Kanda N, Imahoko T, Yoshida K, Tanabashi A, Eilanlou A A, Nabekawa Y, Sumiyoshi T, Kuwata-Gonokami M and Midorikawa K 2020 Light Sci. Appl. 9 168
[28] Ozawa A, Davila-Rodriguez J, Bounds J R, Schuessler H A, Hansch T W and Udem Th 2017 Nat. Commun. 8 44
[29] Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I and Chang Z H 2014 Nat. Photon. 8 437
[30] Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y W, Avila L M, Kalläne M, Mathias S, Kipp L, Rossnagel K and Bauer M 2011 Nature 471 490
[31] Tong X M and Chu S I 2014 Phys. Rev. A 89 023431
[32] Li P C and Chu S I 2020 Chin. Phys. B 29 083202
[33] Li P C, Sheu Y L, Laughlin C and Chu S I 2014 Phys. Rev. A 90 041401R
[34] Liang C T, Wu Y Y, Wang Z B and Li P C 2022 Opt. Express 30 2413
[35] Li P C and Chu S I 2013 Phys. Rev. A 88 053415
[36] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[37] Tong X M and Chu S I 2000 Phys. Rev. A 61 021802(R)
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[3] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[4] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[5] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[6] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[7] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[8] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[9] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[10] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[11] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[12] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[13] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[14] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[15] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
No Suggested Reading articles found!