Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030302    DOI: 10.1088/1674-1056/aca39a
GENERAL Prev   Next  

Floquet scattering through a parity-time symmetric oscillating potential

Xuzhen Cao(曹序桢)1,2, Zhaoxin Liang(梁兆新)3,†, and Ying Hu(胡颖)1,2,‡
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We investigate the scattering of a particle from a trapping potential that is subjected to weak, parity-time symmetric periodic drivings. Using the Floquet theory, we derive the scattering matrix and calculate the transmittance of the incident particle. When the driving is purely coherent, our calculation recovers the known result and the transmission spectrum shows the familiar, bound-state-induced Fano resonances. When the driving is purely incoherent, we find the Fano resonances still occur, but the lineshape of each resonance is reversed compared to the coherent-driving counterpart. Intriguingly, the transmission resonances disappear when both the coherent and incoherent driving fields are present with equal amplitudes. This phenomena can be seen as a manifestation of the non-reciprocal coupling of Floquet channels in the frequency domain. Notably, when the frequency up-conversion is absent, the transmission is such as if there is no driving at all, even when the driving strength increases.
Keywords:  open system      periodic driving      scattering  
Received:  21 September 2022      Revised:  09 November 2022      Accepted manuscript online:  17 November 2022
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.-w (Quantum mechanics)  
  03.65.Nk (Scattering theory)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant No. 11874038), the Zhejiang Provincial Natural Science Foundation (Grant No. LZ21A040001), the National Natural Science Foundation of China (Grant No. 12074344), and the Key Projects of the Natural Science Foundation of China (Grant No. 11835011).
Corresponding Authors:  Zhaoxin Liang, Ying Hu     E-mail:  zhxliang@zjnu.edu.cn;huying@sxu.edu.cn

Cite this article: 

Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖) Floquet scattering through a parity-time symmetric oscillating potential 2023 Chin. Phys. B 32 030302

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[3] Bender C M, Berntson B K, Parker D and Samuel E 2013 Am. J. Phys. 81 173
[4] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[5] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[6] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[7] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
[8] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[9] Zhang F, Feng Y, Chen X, Ge L and Wan W 2020 Phys. Rev. Lett. 124 053901
[10] Zhao J, Liu Y, Wu L, Duan C K, Liu Y X and Du J 2020 Phys. Rev. Appl. 13 014053
[11] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[12] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
[13] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604
[14] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601
[15] Schönleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
[16] Jing H, Özdemir Ş K, Lü H and Nori F 2017 Sci. Rep. 7 3386
[17] Stovneng J A and Hauge E H 1989 J. Stat. Phys. 57 841
[18] Wagner M 1994 Phys. Rev. B 49 16544
[19] Wagner M 1995 Phys. Rev. A 51 798
[20] Saraga D S and Bianchi M S de 1997 Helv. Phys. Acta 70 751
[21] Sun Q f, Wang J and Lin T H 1998 Phys. Rev. B 58 13007
[22] Burmeister G and Maschke K 1998 Phys. Rev. B 57 13050
[23] Li W and Reichl L E 1999 Phys. Rev. B 60 15732
[24] Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J and Sakaki H 1994 Phys. Rev. Lett. 73 3443
[25] Blick R H, Haug R J, Weide D W van der, Klitzing K von and Eberl K 1995 Appl. Phys. Lett. 67 3924
[26] Drexler H, Scott J S, Allen S J, Campman K L and Gossard A C 1995 Appl. Phys. Lett. 67 2816
[27] Keay B J, Allen S J, Jr, Galán J, Kaminski J P, Campman K L, Gossard A C, Bhattacharya U and Rodwell M J W 1995 Phys. Rev. Lett. 75 4098
[28] Thuberg D, Reyes S A and Eggert S 2016 Phys. Rev. B 93 180301
[29] Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402
[30] Longhi S 2017 Europhys. Lett. 117 10005
[31] Shobe K, Kuramoto K, Imura K I and Hatano N 2021 Phys. Rev. Research 3 013223
[32] Shirley J H 1965 Phys. Rev. 138 B979
[33] Fano U 1961 Phys. Rev. 124 1866
[34] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S 2017 Nat. Photon. 11 543
[35] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[36] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[37] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[38] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Science 359 1009
[39] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[40] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[41] Wanjura C C, Brunelli M and Nunnenkamp A 2020 Nat. Commun. 11 3149
[42] Hu B, Zhang Z, Zhang H, Zheng L, Xiong W, Yue Z, Wang X, Xu J, Cheng Y, Liu X and Christensen J 2021 Nature 597 655
[43] Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W and Yan B 2022 Phys. Rev. Lett. 129 070401
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[5] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[11] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[12] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[13] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[14] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[15] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
No Suggested Reading articles found!