Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110304    DOI: 10.1088/1674-1056/23/11/110304
GENERAL Prev   Next  

Promote entanglement trapping in photonic band gaps

Han Wei (韩伟)a, Zhang Ying-Jie (张英杰)a b, Yan Wei-Bin (闫伟斌)b, Xia Yun-Jie (夏云杰)a
a Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
b Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We study the entanglement trapping of two entangled qubits, each of which is in its own photonic band gap, based on the weak measurement and quantum measurement reversal. An almost maximal entanglement of the two-qubit system can be trapped by using a certain weak measurement strength. Furthermore, we find that the optimal entanglement enhancing is not only dependent on the weak measurement strength but also on the different initial states. The outcomes in our scheme are completely different from that without any measurement on the studied system.
Keywords:  quantum information      entanglement trapping      weak measurement      quantum measurement reversal  
Received:  19 February 2014      Revised:  13 May 2014      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11247240, and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20123705120002 and 20133705110001), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024), the Youth Funds from Qufu Normal University, China (Grant No. XJ201219), and the Scientific Research Foundation of Qufu Normal University for Doctors, China (Grant No. BSQD20110132).
Corresponding Authors:  Xia Yun-Jie     E-mail:

Cite this article: 

Han Wei (韩伟), Zhang Ying-Jie (张英杰), Yan Wei-Bin (闫伟斌), Xia Yun-Jie (夏云杰) Promote entanglement trapping in photonic band gaps 2014 Chin. Phys. B 23 110304

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[5] Yu T and Eberly J H 2009 Science 323 598
[6] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[7] Pan C M, Li F, Fang J S and Fang M F 2010 Chin. Phys. B 20 020304
[8] Xu J Z, Guo J B, Wen W, Bai Y K and Yan F L 2012 Chin. Phys. B 21 080305
[9] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[10] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[11] Gordon G and Kurizki G 2006 Phys. Rev. Lett. 97 110503
[12] Maniscalco S, Francia F, Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503
[13] Lidar D A, Chuang I and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[14] Kwiat P G, Berglund A J, Alterpeter J B and White A G 2000 Science 290 498
[15] Gühne O and Tóth G 2009 Physics Reports 474 1
[16] Konopka M and Bužek V 2000 Euro. Phys. J. D 10 285
[17] Zhang Y J, Yang X Q, Han W and Xia Y J 2013 Chin. Phys. B 22 090307
[18] Bellomo B, Franco R L, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[19] Zhang Y J, Man Z X, Xia Y J and Guo G C 2010 Euro. Phys. J. D 58 397
[20] Lodahl P, Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[21] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[22] Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[23] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604
[24] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[25] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 012325
[26] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[27] Garraway B M 1997 Phys. Rev. A 55 2290
[28] Woldeyohannes M and John S 2003 J. Opt. B: Quantum Semiclassical Optics 5 R43
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[4] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[5] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[6] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[7] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[8] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[9] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[10] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[11] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[12] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[13] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[14] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[15] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
No Suggested Reading articles found!