Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110302    DOI: 10.1088/1674-1056/abf34f
GENERAL Prev   Next  

Dense coding capacity in correlated noisy channels with weak measurement

Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋)
School of Physics, Beihang University, Beijing 100191, China
Abstract  Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel. It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel, but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
Keywords:  correlated noise channel      quantum dense coding      weak measurement      reversal measurement  
Received:  22 February 2021      Revised:  19 March 2021      Accepted manuscript online:  30 March 2021
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  05.40.Ca (Noise)  
  89.70.Kn (Channel capacity and error-correcting codes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074027).
Corresponding Authors:  Guo-Feng Zhang     E-mail:  gf1978zhang@buaa.edu.cn

Cite this article: 

Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋) Dense coding capacity in correlated noisy channels with weak measurement 2021 Chin. Phys. B 30 110302

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[3] Bruß D, D'Ariano G M, Lewenstein M, Macchiavello C, Sen De A and Sen U 2004 Phys. Rev. Lett. 93 210501
[4] Bruß D, D'Ariano G M, Lewenstein M, Macchiavello C, Sen De A and Sen U 2006 Int. J. Quantum Inf. 4 415
[5] Barenco A and Ekert A 1995 J. Mod. Opt. 42 1253
[6] Hausladen P, Jozsa R, Schumacher B, Westmoreland M and Wootters W K 1996 Phys. Rev. A 54 1869
[7] Luo Y H, Zhong H S, Manuel Erhard, Wang X L, Peng L C, Mario Krenn, Jiang X, Li L, Liu N L, Lu C Y, Anton Zeilinger and Pan J W 2019 Phys. Rev. Lett. 123 070505
[8] Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302
[9] Shadman Z, Kampermann H, Macchiavello C and Bruß D 2010 New J. Phys. 12 073042
[10] Bose S 2003 Phys. Rev. Lett. 91 207901
[11] Banaszek K, Dragan A, Wasilewski W and Radzewicz C 2004 Phys. Rev. Lett. 92 257901
[12] Paladino E, Faoro L, Falci G and Fazio R 2002 Phys. Rev. Lett. 88 228304
[13] Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301(R)
[14] Hiroshima T 2001 J. Phys. A: Mathe. Gen. 34 6907
[15] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[16] Xu K, Zhang G F and Liu W M 2019 Phys. Rev. A 100 052305
[17] Yeo Y and Skeen A 2003 Phys. Rev. A 67 064301
[18] Tian M and Zhang G 2018 Quantum Inf. Process 17 19
[19] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[20] Cheong Y W and Lee S W 2012 Phys. Rev. Lett. 109 150402
[21] Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[3] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[4] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[5] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[6] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[7] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[8] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[9] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[10] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[11] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[12] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[13] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[14] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[15] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
No Suggested Reading articles found!