|
|
Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states |
Xiao-Long Gong(龚小龙)1, Shuo Cao(曹硕)2,3,†, Yue Fang(方越)2,‡, and Tong-Hua Liu(刘统华)1,§ |
1 School of Physics and Optoelectronic, Yangtze University, Jingzhou 434023, China; 2 Department of Astronomy, Beijing Normal University, Beijing 100875, China; 3 Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China |
|
|
Abstract Realistic quantum systems always exhibit gravitational and relativistic features. In this paper, we investigate the properties of Gaussian steering and its asymmetry by the localized two-mode Gaussian quantum states, instead of the traditional single-mode approximation method in the relativistic setting. We find that the one-side Gaussian quantum steering will monotonically decrease with increasing observers of acceleration. Meanwhile, our results also reveal the interesting behavior of the Gaussian steering asymmetry, which increases for a specific range of accelerated parameter and then gradually approaches to a finite value. Such finding is well consistent and explained by the well-known Unruh effect, which could significantly destroy the one-side Gaussian quantum steering. Finally, our results could also be applied to the dynamical studies of Gaussian steering between the Earth and satellites, since the effects of acceleration are equal to the effects of gravity according to the equivalence principle.
|
Received: 29 August 2021
Revised: 09 November 2021
Accepted manuscript online:
|
PACS:
|
04.62.+v
|
(Quantum fields in curved spacetime)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
06.20.-f
|
(Metrology)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by National Key R&D Program of China (Grant No.2017YFA0402600);the National Natural Science Foundation of China (Grant Nos.11690023,11373014,and 11633001);Beijing Talents Fund of Organization Department of Beijing Municipal Committee of the CPC;the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB23000000);and the Interdiscipline Research Funds of Beijing Normal University. |
Corresponding Authors:
Shuo Cao,E-mail:caoshuo@bnu.edu.cn;Yue Fang,E-mail:fangyue@mail.bnu.edu.cn;Tong-Hua Liu,E-mail:liutongh@yangtzeu.edu.cn
E-mail: caoshuo@bnu.edu.cn;fangyue@mail.bnu.edu.cn;liutongh@yangtzeu.edu.cn
|
About author: 2021-12-5 |
Cite this article:
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华) Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states 2022 Chin. Phys. B 31 050402
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Schrodinger E 1935 Math. Proc. Camb. Phil. Soc. 31 555 [3] Schrödinger E 1936 Math. Proc. Camb. Phil. Soc. 32 446 [4] Branciard C, Cavalcanti E, Walborn S, Scarani V and Wiseman H 2012 Phys. Rev. A 85 010301 [5] Wiseman H, Jones S and Doherty A 2007 Phys. Rev. Lett. 98 140402 [6] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404 [7] He Q Y, Gong Q and Reid M 2015 Phys. Rev. Lett. 114 060402 [8] Kogias I, Lee A, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403 [9] Marciniak M, Rutkowski A, Yin Z, Horodecki M and Horodecki R 2015 Phys. Rev. Lett. 115 170401 [10] He Q Y, Rosales-Zárate L, Adesso G and Reid M 2015 Phys. Rev. Lett. 115 180502 [11] Wang M, Qin Z and Su X 2017 Phys. Rev. A 95 052311 [12] Sainz A, Brunner N, Cavalcanti D, Skrzypczyk P and Vertesi T 2015 Phys. Rev. Lett. 115 190403 [13] Chen S, Budroni C, Liang Y and Chen Y 2016 Phys. Rev. Lett. 116 240401 [14] Walborn S, Salles A, Gomes R, Toscano F and Souto-Ribeiro P 2011 Phys. Rev. Lett. 106 130402 [15] Li C M, Chen K, Chen Y N, Zhang Q, Chen Y A and Pan J W 2015 Phys. Rev. Lett. 115 010402 [16] Bowles J, Vértesi T, Quintino M and Brunner N 2014 Phys. Rev. Lett. 112 200402 [17] Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R and Schnabel R 2012 Nat. Photon 6 596 [18] Wollmann S, Walk N, Bennet A, Wiseman H and Pryde G 2016 Phys. Rev. Lett. 116 160403 [19] Guerreiro T, Monteiro F, Martin A, Brask J, Vértesi T, Korzh B, Caloz M, Bussiéres F, Verma V, Lita A, Mirin R, Nam S, Marsilli F, Shaw M, Gisin N, Brunner N, Zbinden H and Thew R 2016 Phys. Rev. Lett. 117 070404 [20] Wittmann B, Ramelow S, Steinlechner F, Langford N, Brunner N, Wiseman H, Ursin R and Zeilinger A 2012 New J. Phys. 14 053030 [21] Kocsis S, Hall M, Bennet A and Pryde G 2015 Nat. Commun. 6 5886 [22] Saunders D, Jones S, Wiseman H and Pryde G 2010 Nat. Phys. 6 845 [23] Eberle T, Händchen V, Duhme J, Franz T, Werner R and Schnabel R 2011 Phys. Rev. A 83 052329 [24] Xiao Y, Ye X, Sun K, Xu J, Li C and Guo G C 2017 Phys. Rev. Lett. 118 140404 [25] Wollmann S, Walk N, Bennet A, Wiseman H and Pryde G 2016 Phys. Rev. Lett. 116 160403 [26] He Q Y, Rosales-Zárate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502 [27] Liu T H, Jing J L and Wang J C 2018 Adv. Quantum Technol. 1 1800072 [28] Unruh W G 1976 Phys. Rev. D 14 870 [29] Sabín C and Adesso G 2015 Phys. Rev. A 92 042107 [30] Wang J C, Cao H X, Jing J L and Fan H 2016 Phys. Rev. D 93 125011 [31] Liu T H, W J C, Jing J L and Fan H 2018 Ann. Phys. 390 334 [32] Fuentes-Schuller I and Mann R B 2005 Phys. Rev. Lett. 95 120404 [33] Downes T G, Fuentes I and Ralph T C 2011 Phys. Rev. Lett. 106 210502 [34] Hu B L, Lin S Y and Louko J 2012 Class. Quantum Grav. 29 224005 [35] Ahmadi M, Bruschi D E and Fuentes I 2014 Phys. Rev. D 89 065028 [36] Wang J, Jing J and Fan H 2014 Phys. Rev. D 90 025032 [37] Wang J C, Cao H X, Jing J L and Fan H 2016 Phys. Rev. D 93 125011 [38] Zhang S X, Liu T H, Cao S, Liu Y T, Geng S B and Lian Y J 2020 Chin. Phys. B 29 050402 [39] Céleri L C, Landulfo A G S, Serra R M and Matsas George E A 2010 Phys. Rev. A 81 062130 [40] Tian Z H, Wang J C and Jing J L 2012 Ann. Phys. 332 98 [41] Wang J C, Tian Z H, Jing J L and Fan H 2016 Phys. Rev. A 93 062105 [42] Fink M 2017 Nat. Commun. 8 15304 [43] Bruschi D E, Louko J, Martín-Martínez E, Dragan A and Fuentes I 2010 Phys. Rev. A 82 042332 [44] Liu T H, Cao S, Wu S M and Zeng H S 2019 Laser Phys. Lett. 16 095201 [45] Dragan A, Doukas J, Martín-Martínez E and Bruschi D E 2013 Clas. Quant. Grav. 30 235006 [46] Dragan A, Doukas J and Martín-Martínez E 2013 Phys. Rev. A 87 052326 [47] Ahmadi M, Lorek K, Checińska A, Smith A R H, Mann R B and Dragan A 2016 Phys. Rev. D 93 124031 [48] Ford L H 1997 arXiv e-prints. gr-qc/9707062 [49] Schumaker B L 1986 Phys. Rep. 135 317 [50] Simon R, Sudarshan E C G and Mukunda N 1988 Phys. Rev. A 37 3028 [51] Grochowski P T, Rajchel G, Kialka F and Dragan A 2017 Phys. Rev. D 95 105005 [52] Liu T H, Cao S and Wu S M 2020 Sci. Rep. 10 14697 [53] Doukas J, Brown E G, Dragan A and Mann R B 2013 Phys. Rev. A 87 012306 [54] Adesso G, Girolami D and Serafini A 2012 Phys. Rev. Lett. 109 190502 [55] Kogias I, Lee A, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403 [56] Downes T G, Fuentes I and Ralph T C 2011 Phys. Rev. Lett. 106 210502 [57] Crispino L C B, Higuchi A and Matsas G E A 2008 Rev. Mod. Phys. 80 787 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|