Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050402    DOI: 10.1088/1674-1056/ab7d9a
GENERAL Prev   Next  

Quantum fluctuation of entanglement for accelerated two-level detectors

Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰)
Department of Astronomy, Beijing Normal University, Beijing 100875, China
Abstract  It is well known that the quantum fluctuation of entanglement (QFE) between Unruh-De Witt detector (modeled by a two-level atom) is always investigated in a relativistic setting. However, both of the Unruh radiation and quantum fluctuation effects play an important role in precise measurements of quantum entanglement. In this paper, we have quantitatively analyzed how the relativistic motion affects the QFE for two entangled Unruh-De Witt detectors, one of which is accelerated and interacting with the neighbor external scalar field. Our results show that the QFE, which initially increases by the Unruh thermal noise, will suddenly decay when the acceleration reaches to a considerably large value. Therefore, the relativistic effect will lead to non-negligible QFE effect. We also find that the initial QFE (without acceleration effect) reaches its minimum value at the maximally entangled state and the separable state. More importantly, our analysis demonstrates that although the QFE has a huge decay when the acceleration is greater than ~0.96, the ratio of ΔE/C is still very large, due to the simultaneous decay of concurrence to a very low value. Finally, enlightened by the well-known equivalence principle, we discuss the possibility of applying the above findings to the dynamics of QFE under the influence of gravitation field.
Keywords:  relativistic quantum information      quantum fluctuation      Unruh effect  
Received:  03 January 2020      Revised:  25 February 2020      Accepted manuscript online: 
PACS:  04.62.+v (Quantum fields in curved spacetime)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402600), the National Natural Science Foundation of China (Grant Nos. 11690023, 11373014, and 11633001), the Beijing Talents Fund of Organization Department of Beijing Municipal Committee of the CPC, and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23000000).
Corresponding Authors:  Tong-Hua Liu, Shuo Cao     E-mail:  liutongh@mail.bnu.edu.cn;caoshuo@bnu.edu.cn

Cite this article: 

Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰) Quantum fluctuation of entanglement for accelerated two-level detectors 2020 Chin. Phys. B 29 050402

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information(Cambridge: Cambridge University Press) pp. 1-33
[2] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Song H F, Rachel S and Hur K Le 2010 Phys. Rev. B 82 012405
[5] Klich I and Levitov L 2009 Phys. Rev. Lett. 102 100502
[6] Song H F, Rachel S, Flindt C, Klich I, Laflorencie N and Hur K Le 2012 Phys. Rev. B 85 035409
[7] Calabrese P, Mintchev M and Vicari E 2012 Europhys. Lett. 98 20003
[8] Wootters W K 2001 Quantum Inf. Comput. 11 27
[9] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[10] Landulfo A G S and Matsas G E A 2009 Phys. Rev. A 80 032315
[11] Dik B, Pan J W, Klaus M, Manfred E, Harald W and Anton Z 1997 Nature 390 575
[12] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[13] Pan J W, Dik B, Harald W and Anton Z 1998 Phys. Rev. Lett. 80 3891
[14] Alsing P M and Milburn G J 2003 Phys. Rev. Lett. 91 180404
[15] Fuentes-Schuller I and Mann R B 2005 Phys. Rev. Lett. 95 120404
[16] Downes T G, Fuentes I and Ralph T C 2011 Phys. Rev. Lett. 106 210502
[17] Friis N 2013 Phys. Rev. Lett. 110 113602
[18] Ostapchuk D C M, Lin S Y, Mann R B and Hu B L 2012 JHEP 07 72
[19] Landulfo A G S and Matsas G E A 2009 Phys. Rev. A 80 032315
[20] Unruh W G 1976 Phys. Rev. D 14 870
[21] Crispino L 2008 Rev. Mod. Phys. 80 787
[22] Unruh W G and Wald R M 1984 Phys. Rev. D 29 1047
[23] Liu T H, Wang J C, Jing J L and Fan H 2018 Annals of Physics 390 334
[24] Yin J, et al. 2017 Science 356 1140
[25] Vallon G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G and Villoresi P 2015 Phys. Rev. Lett. 115 040502
[26] Jofre M, et al. 2011 Opt. Express 19 3825
[27] Liu T H, Jing J L and Wang J C 2018 Adv. Quantum Technol. 1 1800072
[28] Liu T H, Wu S M and Cao S 2019 Laser Phys. Lett. 16 095201
[29] Alsing P M, McMahon D and Milburn G J 2004 J. Opt. B: Quantum Semiclass. Opt. 6 8
[30] Schuller I F and Mann R B 2005 Phys. Rev. Lett. 95 120404
[31] Céleri L C, Landulfo A G S, Serra R M and Matsas G E A 2010 Phys. Rev. A 81 062130
[32] Wald R M 1990 Vacuum States in Space-Times with Killing Horizons in Quantum Mechanics in Curved Space-Time (NATO Advanced Study Institutes Series) Vol. B230
[33] Wald R M 1994 Quantum Field Theory in Curved Spacetimes and Black Hole Thermodynamics (Chicago: The University of Chicago Press) pp. 1-336
[34] Bruschi D E, Louko J, Martín-Martínez E, Dragan A and Fuentes I 2010 Phys. Rev. A 82 042332
[35] Hao X and Wu Y Z 2016 Annals of Physic. 372 110
[36] Penrose R and Rindler W 1987 Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields (Cambridge: Cambridge University Press) pp. 31-55
[37] Gadelha A L, Marchioro D Z and Nedel D L 2006 Phys. Lett. B 639 383
[38] Feldman E B and Yurishchev M A 2009 JETP Lett. 90 70
[39] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[40] Villaruel A M B and Paraan F N C 2016 Phys. Rev. A 94 022323
[41] Furman G, Goren S D, Meerovich V and Sokolovsky V 2015 Phys. Scr. 90 105301
[42] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[1] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[2] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[3] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[4] Parallel generation of 31 tripartite entangled states based on optical frequency combs
Jing Zhang(张静), Yan-Fang Wang(王艳芳), Xiao-Yu Liu(刘晓宇), Rong-Guo Yang(杨荣国). Chin. Phys. B, 2017, 26(12): 124205.
[5] Thermal vacuum state corresponding to squeezed chaotic light and its application
Wan Zhi-Long (万志龙), Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2015, 24(12): 120301.
[6] Teleportation of three-dimensional single particle state in noninertial frames
Wu Qi-Cheng (吴奇成), Wen Jing-Ji (文晶姬), Ji Xin (计新), Yeon Kyu-Hwang. Chin. Phys. B, 2014, 23(2): 020303.
[7] Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder
Wang Jing-Xue (王景雪), Liu Mei-Feng (刘美风), Yan Zhi-Bo (颜志波), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2013, 22(7): 077701.
[8] Photon counts modulation in optical time domain reflectometry
Wang Xiao-Bo(王晓波), Wang Jing-Jing(王晶晶), Zhang Guo-Feng(张国锋), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2011, 20(6): 064204.
[9] Properties of ground state and anomalous quantum fluctuations in one-dimensional polaron–soliton systems—the effects of electron-two-phonon interaction and non-adiabatic quantum correlations
Luo Zhi-Hua(罗质华), Cao Xi-Jin(曹锡金), and Yu Chao-Fan(余超凡). Chin. Phys. B, 2011, 20(6): 067103.
[10] Resonant tunneling and quantum fluctuation in a driven triple-well system
Lu Wei-Tao(卢伟涛), Wang Shun-Jin(王顺金), and Zhang Hua(张华). Chin. Phys. B, 2010, 19(2): 020304.
[11] Effects of anisotropy on quantum fluctuation of a three-layer system with mutisublattice
Jiang Wei(姜伟), Zhang Fan(张凡), Guan Hong-Yu(关宏宇), and Liang Ji-Yan(梁吉艳). Chin. Phys. B, 2010, 19(12): 127502.
[12] Quantum fluctuations of the antiferro-antiferromagnetic double-layer
Jiang Wei(姜伟), Zhu Cheng-Bo(朱程博), Yu Gui-Hong(于桂红), and Lo Veng-Cheong(罗永祥). Chin. Phys. B, 2009, 18(8): 3547-3550.
[13] Thermal effect and energy-level transition rule for a mesoscopic LC circuit with inductance--capacitance coupling
Su Jie(苏杰), Wang Ji-Suo(王继锁), Liang Bao-Long(梁宝龙), and Zhang Xiao-Yan(张晓燕). Chin. Phys. B, 2009, 18(5): 2024-2029.
[14] Quantum backreaction of quantum fluid in Bose--Einstein condensates
Xu Yan(徐岩), Xiong Zu-Zhou(熊祖周), Chen Bing(陈兵), Li Zhao-Xin(李照鑫), and Tan Lei(谭磊). Chin. Phys. B, 2009, 18(11): 4734-4737.
[15] Quantum fluctuations of mesoscopic damped double resonance RLC circuit with mutual capacitance--inductance coupling in thermal excitation state
Xu Xing-Lei(徐兴磊), Li Hong-Qi (李洪奇), and Wang Ji-Suo(王继锁). Chin. Phys. B, 2007, 16(8): 2462-2470.
No Suggested Reading articles found!