Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064214    DOI: 10.1088/1674-1056/ab8622

Extended validity of weak measurement

Jiangdong Qiu(邱疆冬)1, Changliang Ren(任昌亮)2, Zhaoxue Li(李兆雪)1, Linguo Xie(谢林果)1, Yu He(何宇)1, Zhiyou Zhang(张志友)1, Jinglei Du(杜惊雷)1
1 College of Physics, Sichuan University, Chengdu 610064, China;
2 Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract  We introduce a modified weak value that is related to the mean value of input meter variable. With the help of the modified weak value, the validity conditions for various modified versions of weak value formalism are investigated, in terms of the dependence of the pointer shift on the mean value of the input meter. The weak value formalism, often used to represent the pointer shift, with the modified weak value is of great use in simplifying calculations and giving guidance of practical experiments whenever the mean value of the input meter variable is nonzero. The simulation in a qubit system is presented and coincident well with our theoretical result.
Keywords:  weak measurement      quantum measurement      modified weak value  
Received:  08 November 2019      Revised:  05 March 2020      Accepted manuscript online: 
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Xa (Optical tests of quantum theory)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0305200), the National Natural Science Foundation of China (Grant Nos. 11674234 and 11605205), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2015jcyjA00021 and cstc2018jcyjAX0656), Innovation Project of Sichuan University, China (Grant No. 2018SCUH0021), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2015317), the Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees, China (Grant Nos. cx2017134 and cx2018040), the Fund of CAS Key Laboratory of Microscale Magnetic Resonance, and the Fund of CAS Key Laboratory of Quantum Information, China.
Corresponding Authors:  Changliang Ren, Zhiyou Zhang     E-mail:;

Cite this article: 

Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷) Extended validity of weak measurement 2020 Chin. Phys. B 29 064214

[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[2] Brunner N, Acín A, Collins D, Gisin N and Scarani V 2003 Phys. Rev. Lett. 91 180402
[3] Brunner N, Scarani V, Wegmüller M, Legré M and Gisin N 2004 Phys. Rev. Lett. 93 203902
[4] Yokota K, Yamamoto T, Koashi M and Imot N 2009 New J. Phys. 11 033011
[5] Lundeen J S and Steinberg A M 2009 Phys. Rev. Lett. 102 020404
[6] Palacios-Laloy A, Mallet F, Nguyen F, et al. 2010 Nat. Phys. 6 442
[7] Dressel J, Broadbent C J, Howell J C and Jordan A N 2011 Phys. Rew. Lett. 106 040402
[8] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[9] Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402
[10] Salvail J Z, Agnew M, Johnson A S, Bolduc E, Leach J and Boyd R W 2011 Nat. Phys. 7 316
[11] Zhang L J, Datta A and Walmsley I A 2015 Phys. Rev. Lett. 114 210801
[12] Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401
[13] Harris J, Boyd R W and Lundeen J S 2017 Phys. Rev. Lett. 118 070802
[14] Hosten O and Kwiat P 2008 Science. 319 787
[15] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[16] Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822
[17] Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405
[18] Viza G I, et al. 2013 Opt. Lett. 38 2949
[19] Egan P and Stone J A 2012 Opt. Lett. 37 4991
[20] Li H J, Huang J Z, Yu Y, Li Y J, Fang C and Zeng G H 2018 Appl. Phys. Lett. 112 231901
[21] Chen G, Aharon N, Sun Y N, et al. 2018 Nat Commun. 9 93
[22] Chen G, Zhang L, Zhang W H, et al. 2018 Phys. Rev. Lett. 121 060506
[23] Liu W T, MartínezRincón J, Viza G I and Howell J C 2017 Opt. Lett. 42 903
[24] Salazar-Serrano L J, Guzmán D A, Valencia A and Torres J P 2015 Opt. Express 23 10097
[25] Ren C L, Qiu J D, Chen J L, Shi H F 2018 Opt. Commun. 425 19
[26] Jozsa R 2007 Phys. Rev. A 76 044103
[27] Aiello A and Woerdman J P 2008 Opt. Lett. 33 1437
[28] Dennis M R and Götte J B 2012 New J. Phys. 14 073013
[29] Kofman A G, Ashhab S and Nori F 2012 Phys. Rep. 520 43
[30] Wu S J and Li Y 2011 Phys. Rev. A 83 052106
[31] Pang S S, Wu S J and Chen Z B 2012 Phys. Rev. A 86 022112
[32] Puentes G, Hermosa N and Torres J P 2012 Phys. Rev. Lett. 109 040401
[33] Turek Y, Kobayashi H, Akutsu T, Sun C P and Shikano Y 2015 New J. Phys. 17 083029
[34] Wang B, Li P, Chen T and Zhang X 2017 J. Opt. 19 055603
[35] Aharonov Y, Colombo F, Sabadini I, et al. 2011 J. Phys. A: Math. Theor. 44 365304
[36] Berry M V and Shukla P 2012 J. Phys. A: Math. Theor. 45 015301
[37] Koike T and Tanaka S 2011 Phys. Rev. A 84 062106
[38] Susa Y, Shikano Y and Hosoya A 2012 Phys. Rev. A 85 052110
[39] Pang S S, Brun T A, Wu S J and Chen Z B 2014 Phys. Rev. A 90 012108
[40] Piacentini F, Avella A, Gramegna M, et al. 2018 Sci. Rep. 8 6959
[41] Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
[42] Strübi G and Bruder C 2013 Phys. Rev. Lett. 110 083605
[43] Xu X, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604
[44] Kedem Y 2014 Phys. Lett. A 378 2096
[45] Salazar-Serrano L, Janner D, Brunner N, Pruneri V and Torres J P 2014 Phys. Rev. A 89 012126
[46] Kumar P and Dasgupta S 2015 Phys. Rev. A 91 043803
[47] Mirhosseini M, Via G I, Magaña-Loaiza O S, et al. 2016 Phys. Rev. A 93 053836
[48] Zhang Z H, Chen G, Xu X Y, et al. 2016 Phys. Rev. A 94 053843
[49] Torres J P and Salazar-Serrano L J 2016 Sci. Rep. 6 19702
[50] Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401
[51] Ho L B and Imoto N 2017 Phys. Rev. A 95 032135
[52] Ho L B and Imoto N 2018 Phys. Rev. A 97 012112
[53] Dziewior J, Knips L, Farfurnik D, Senkalla K, Benshalom N, Efroni J, Meinecke J, Bar-Ad S, Weinfurter H and Vaidman L 2019 Proc. Natl. Acad. Sci. USA 116 2881
[54] Vaidman L, Ben-Israel A, Dziewior J, Knips L, Weißl M, Meinecke J, Schwemmer C, Ber R and Weinfurter H 2017 Phys. Rev. A 96 032114
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[3] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[4] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[5] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[6] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[7] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[8] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[9] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[13] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
[14] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[15] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
No Suggested Reading articles found!