Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074202    DOI: 10.1088/1674-1056/ab8c3e

Reversion of weak-measured quantum entanglement state

Shao-Jiang Du(杜少将)1, Yonggang Peng(彭勇刚)2, Hai-Ran Feng(冯海冉)1, Feng Han(韩峰)1, Lian-Wu Yang(杨连武)1, Yu-Jun Zheng(郑雨军)2
1 Department of Physics and Information Engineering, Jining University, Qufu 273155, China;
2 School of Physics, Shandong University, Jinan 250100, China
Abstract  We theoretically study the reversible process of quantum entanglement state by means of weak measurement and corresponding reversible operation. We present a protocol of the reversion operation in two bodies based on the theory of reversion of single photon and then expend it in quantum communication channels. The theoretical results demonstrate that the protocol does not break the information transmission after a weak measurement and a reversible measurement with the subsequent process in the transmission path. It can reverse the perturbed entanglement intensity evolution to its original state. Under the condition of different weak measurement intensity the protocol can reverse the perturbed quantum entanglement system perfectly. In the process we can get the classical information described by information gain from the quantum system through weak measurement operation. On the other hand, in order to realize complete reversibility, the classical information of the quantum entanglement system must obey a limited range we present in this paper in the reverse process.
Keywords:  quantum entanglement      weak measurement      reversion operation      information gain and reversibility  
Received:  31 January 2020      Revised:  13 April 2020      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504135) and University Science and Technology Plan Project of Shandong Province, China (Grant Nos. J16LJ53).
Corresponding Authors:  Shao-Jiang Du, Yu-Jun Zheng     E-mail:;

Cite this article: 

Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军) Reversion of weak-measured quantum entanglement state 2020 Chin. Phys. B 29 074202

[1] Wootters W K and Zurek W H 2009 Phys. Today 62 76
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Mattle K, Pan J W, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[4] Furusawa A 1998 Science 282 706
[5] Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403
[6] Zhao N, Z H U C H and Quan D X 2015 Chin. Phys. Lett. 32 80306
[7] Hou L L, Xue J Z, Sui Y X and Wang S 2019 Chin. Phys. B 28 094217
[8] Xiang Z L, Zhang M Z, Liang Jiang L and Rabl P 2017 Phys. Rev. X 7 011035
[9] Du S J, Xia Y J, Duan D Y, Zhang L and Gao Q 2015 Chin. Phys. B 24 044205
[10] Vaziri A, Weihs B and Zeilinger A 2002 Phys. Rev. Lett. 89 240401
[11] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B et al. 2007 Nat. Phys. 3 481
[12] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J et al. 2017 Nature 549 70
[13] Vaidman L, Aharonov Y and Albert D Z 1987 Phys. Rev. Lett. 58 1403
[14] Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
[15] Sun Q Q, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 80 033838
[16] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 64 012325
[17] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[18] Cui T, Huang J Z, Liu X and Zeng G H 2016 Chin. Phys. B 25 020301
[19] Wang S C, Yu Z W and Wang X B 2014 Phys. Rev. A 89 022318
[20] Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 29 11978
[21] Cheong Y W and Lee S W 2012 Phys. Rev. Lett. 109 150402
[22] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140403
[23] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
[24] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[25] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[26] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[27] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 4002
[28] Liu C R, Yu P, Chen X Z, Xu H Y, Huang L and Lai Y C 2019 Chin. Phys. B 28 100501
[29] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[30] Zhang H, Liu Q, Xu X S, Xiong J, Alsaedi A, Hayat T and Deng F G 2017 Phys. Rev. A 96 052330
[31] Sainz I and Bjork G 2007 Phys. Rev. A 76 042313
[32] Afshar D, Anbaraki A and Jafarpour M 2017 Opt. Commun. 402 80
[33] Krumm F and Vogel W 2018 Phys. Rev. A 97 043806
[34] Hofmann H F 1953 Phys. Rev. A 89 123
[35] Koashi M and Ueda M 1999 Phys. Rev. Lett. 82 2598
[36] Banaszek K and Devetak I 1999 Phys. Rev. A 64 466
[37] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[38] Verstraete F, Audenaert K, Dehaene J and Moor B D 2001 J. Phys. A: Math. Gen. 34 10327
[39] Kim J S 2018 Phys. Rev. A 97 012334
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[6] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[7] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[8] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[9] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[10] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[11] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[12] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[13] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[14] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[15] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
No Suggested Reading articles found!