Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110303    DOI: 10.1088/1674-1056/23/11/110303
GENERAL Prev   Next  

Controllable preparation of two-mode entangled coherent states in circuit QED

Ji Ying-Hua (嵇英华)a b, Liu Yong-Mei (刘咏梅)c
a Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
b Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China;
c College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Abstract  Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (Λ-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR decay on the prepared entangled states is analyzed.
Keywords:  circuit QED      preparation of quantum state      entangled coherent state      concurrence  
Received:  30 March 2014      Revised:  28 April 2014      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11264015).
Corresponding Authors:  Ji Ying-Hua     E-mail:  ahmxhxtt@aliyun.com

Cite this article: 

Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅) Controllable preparation of two-mode entangled coherent states in circuit QED 2014 Chin. Phys. B 23 110303

[1] Franco R Lo, Compagno G, Messina A and Napoli A 2007 Phys. Rev. A 76 011804
[2] Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M and Cleland A N 2009 Nature 459 546
[3] Chen M Y, Tu Matisse W Y and Zhang W M 2009 Phys. Rev. B 80 214538
[4] Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
[5] Bell J S 1965 Physics 1 95
[6] Behzadi N 2013 Quantum Inf. Process 12 21
[7] Bennet C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
[9] Guo G C and Zheng S B 1996 Opt. Commun. 133 142
[10] Zhou L and Xiong H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 25501
[11] Solano E, Agarwal G S andWalther H 2003 Phys. Rev. Lett. 90 027903
[12] Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
[13] Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Co0rcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506
[14] Ji Y H and Hu J J 2014 Chin. Phys. B 23 040307
[15] Franco R Lo, Compagno G, Messina A and Napoli A 2010 Phys. Lett. A 374 2235
[16] Zhang F Y, Chen Z H, Li C and Song H S 2012 Phys. Lett. A 376 2418
[17] Fink J M, Goppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
[18] Ji Y H, Lai H F, Cai S H and Wang Z S 2010 Chin. Phys. B 19 030310
[19] Zhou Z, Chu S I and Han S 2002 Phys. Rev. B 66 054527
[20] Yang C P and Han S 2006 Phys. Rev. A 73 032317
[21] Lougovski P, Solano E and Walther H 2005 Phys. Rev. A 71 013811
[22] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
[23] Biswas A and Agarwal G S 2004 Phys. Rev. A 69 062306
[24] Mu Q X, Ma Y H and Zhou L 2009 J. Phys. B 42 225304
[25] Wang X and Sanders B C 2001 Phys. Rev. A 65 012303
[26] Peixoto de Faria J G and Nemes M C 1999 Phys. Rev. A 59 3918
[1] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[2] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[3] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[4] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[5] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[6] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[7] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[8] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[9] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[10] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[11] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[12] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[13] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[14] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[15] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
No Suggested Reading articles found!