ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Parameter accuracy analysis of weak-value amplification process in the presence of noise |
Jiangdong Qiu(邱疆冬)1, Zhaoxue Li(李兆雪)1, Linguo Xie(谢林果)2, Lan Luo(罗兰)1, Yu He(何宇)1, Changliang Ren(任昌亮)3,†, Zhiyou Zhang(张志友)1,‡, and Jinglei Du(杜惊雷)1 |
1 College of Physics, Sichuan University, Chengdu 610064, China; 2 Key Laboratory of Photonic and Optical Detection in Civil Aviation and Atmospheric Lidar Institute, Civil Aviation Flight University of China, Guanghan 618300, China; 3 Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China |
|
|
Abstract We theoretically introduce the statistical uncertainty of photon number and phase error to discuss the precision of parameters to be measured based on weak measurements. When the photon counting scheme is used, we discuss the relative accuracy of the system in the presence of phase error by using the orthogonal and nonorthogonal pre- and post-selected states, respectively. When using the measurement scheme of pointer shift, we discuss the measurement accuracy in the presence of phase error, pointer resolution, and statistical uncertainty. These results give a guide way to get the smallest relative precision and deepen our understanding about weak measurement.
|
Received: 03 November 2020
Revised: 25 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
42.50.Tx
|
(Optical angular momentum and its quantum aspects)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0305200), the National Natural Science Foundation of China (Grant Nos. 11674234 and 11605205), the Natural Science Foundation of Chongqing (Grant Nos. cstc2015jcyjA00021 and cstc2018jcyjAX0656), the Innovation Project of Sichuan University (Grant No. 2018SCUH0021), the Youth Innovation Promotion Association Program of the Chinese Academy of Sciences (CAS) (Grant No. No. 2015317), the Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees (Grant Nos. cx2017134 and cx2018040), the Fund of CAS Key Laboratory of Microscale Magnetic Resonance, and the Fund of CAS Key Laboratory of Quantum Information. |
Corresponding Authors:
Changliang Ren, Zhiyou Zhang
E-mail: renchangliang@cigit.ac.cn;zhangzhiyou@scu.edu.cn
|
Cite this article:
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷) Parameter accuracy analysis of weak-value amplification process in the presence of noise 2021 Chin. Phys. B 30 064216
|
[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351 [2] Hosten O and Kwiat P 2008 Science 319 787 [3] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601 [4] Jayaswal G, Mistura G and M Merano 2014 Opt. Lett. 39 6257 [5] Magaña-Loaiza O S, Mirhosseini M, Rodenburg B and Boyd R W 2014 Phys. Rev. Lett. 112 200401 [6] Xu X, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604 [7] Shomroni I, Bechler O, Rosenblum S and Dayan B 2013 Phys. Rev. Lett. 111 023604 [8] Hallaji M, Feizpour A, Dmochowski G, Sinclair J and Steinberg A M 2017 Nat. Phys. 13 540 [9] Singh A K, Ray S K, Chandel S, Pal S, Gupta A, Mitra P and Ghosh N 2018 Phys. Rev. A 97 053801 [10] Brunner N, Acín A, Collins D, Gisin N and Scarani V 2003 Phys. Rev. Lett. 91 180402 [11] Viza G I, Martínez-Rincón J, Howland G A, Frostig H, Shomroni I, Dayan B and Howell J C 2013 Opt. Lett. 38 2949 [12] Egan P and Stone J A 2012 Opt. Lett. 37 4991 [13] Li H, Huang J, Yu Y, Li Y, Fang C and Zenga G 2018 Appl. Phys. Lett. 112, 231901 [14] Liu W, MartínezRincón J, Viza G I and Howell J C 2017 Opt. Lett. 42 903 [15] Harris J, Boyd R W and Lundeen J S 2017 Phys. Rev. Lett. 118 070802 [16] Sinclair J, Hallaji M, Steinberg A M, Tollaksen J and Jordan A N 2017 Phys. Rev. A 96 052128 [17] Pang S, Alonso J R G, Brun T A and Jordan A N 2016 Phys. Rev. A 94 012329 [18] Jordan A N, Martínez-Rincón J and Howell J C 2014 Phys. Rev. X 4 011031 [19] Viza G I, Martínez-Rincón J, Alves G B, Jordan A N and Howell J C 2015 Phys. Rev. A 92 032127 [20] Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405 [21] Combes J, Ferrie C, Jiang Z and Caves C M 2014 Phys. Rev. A 89 052117 [22] Tanaka S and Yamamoto N 2013 Phys. Rev. A 88 042116 [23] Zhang L, Datta A and Walmsley I A 2015 Phys. Rev. Lett. 114 210801 [24] Ferrie C and Combes J 2014 Phys. Rev. Lett. 112 040406 [25] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032 [26] Alves G B, EscherB M, de Matos Filho R L, Zagury N and Davidovich L 2015 Phys. Rev. A 91 062107 [27] Bié Alves G, Pimente A, Hor-Meyll M, Walborn S P, Davidovich L and de Matos Filho R L 2017 Phys. Rev. A 95 012104 [28] Kedem Y 2012 Phys. Rev. A 85 060102 [29] Pang S, Dressel J and Brun T A 2014 Phys. Rev. Lett. 113 030401 [30] Pang S and Brun T A 2015 Phys. Rev. A 92 012120 [31] Lyons K, Pang S, Kwiat P G and Jordan A N 2016 Phys. Rev. A 93 043841 [32] Li L, Li Y, Zhang Y, Yu S, Lu C, Liu N, Zhang J and Pan J 2018 Phys. Rev. A 97 033851 [33] Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401 [34] Dressel J, Lyons K, Jordan A N, Graham T M and Kwiat P G 2013 Phys. Rev. A 88 023821 [35] Lyons K, Dressel J, Jordan A N, Howell J C and Kwiat P G 2015 Phys. Rev. Lett. 114 170801 [36] Wang Y T, Tang J S, Hu G, et al. 2016 Phys. Rev. Lett. 117 230801 [37] Strübi G and Bruder C 2013 Phys. Rev. Lett. 110 083605 [38] Fang C, Huang J, Yu Y, Li Q and Zeng G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 175501 [39] Martínez-Rincón J, Liu W, Viza G I and J Howell C 2016 Phys. Rev. Lett. 116 100803 [40] Chen G, Zhang L J, Zhang W H, et al. 2018 Phys. Rev. Lett. 121 060506 [41] Bertúlio de Lima Bernardo 2014 J. Opt. Soc. Am. B 31 1494 [42] Starling D, Dixon P, Williams N, Jordan A N and Howell J C 2010 Phys. Rev. A 82 011802(R) [43] Knee G C and Munro W J 2015 Phys. Rev. A 92 012130 [44] Huang J Z, Chen F and Zeng G H 2018 Phys. Rev. A 97 063853 [45] Wang B, Li Y, Pan M, Ren J, Xiao Y, Yang H and Gong Q 2014 Opt. Lett. 39 3425 [46] Qiu X D, Xie L G, Liu X, Luo L, Li Z X, Zhang Z Y and Du J L 2017 Appl. Phys. Lett. 110 071105 [47] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188 [48] Mirhosseini M, Maganña-Loaiza O S, Rafsanjani S and Boyd R W 2014 Phys. Rev. Lett. 113 090402 [49] Vallone G and Dequal D 2016 Phys. Rev. Lett. 116 040502 [50] Kofman A G, Ashhab S and Nori F 2012 Phys. Rep. 520 43 [51] Nakamura K, Nishizawa A and Fujimoto M 2012 Phys. Rev. A 85 012113 [52] Wu S and Li Y 2011 Phys. Rev. A 83 052106 [53] Pang S, Wu S and Chen Z 2012 Phys. Rev. A 86 022112 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|