Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034206    DOI: 10.1088/1674-1056/ac1f04

Increasing the efficiency of post-selection in direct measurement of the quantum wave function

Yong-Li Wen(温永立)1, Shanchao Zhang(张善超)2,3, Hui Yan(颜辉)2,3, and Shi-Liang Zhu(朱诗亮)2,3,†
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;
3 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Abstract  Direct weak or strong measurement of quantum wave function based on post-selections has been widely explored; however, the efficiency of the measurement is heavily limited by the success probability of post-selection. Here we propose a modified scheme to directly measure photon's wave function by simply inserting a liquid crystal plate before the post-selection stage. Numerical simulations demonstrate that our modified method can significantly increase the efficiency of post selection. Our proposal would speed up the quantum wave function measurement with high resolution and high fidelity.
Keywords:  weak measurement      quantum state  
Received:  10 June 2021      Revised:  11 July 2021      Accepted manuscript online:  19 August 2021
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Corresponding Authors:  Shi-Liang Zhu     E-mail:

Cite this article: 

Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮) Increasing the efficiency of post-selection in direct measurement of the quantum wave function 2022 Chin. Phys. B 31 034206

[1] von Neumann J, Beyer R and Wheeler N 2018 Mathematical Foundations of Quantum Mechanics:New Edition (Princeton University Press)
[2] Struppa D C and Tollaksen J M (eds.) 2014 Quantum theory:a two-time success story:Yakir Aharonov festschrift (Springer)
[3] Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and Liu Y K 2010 Nat. Commun. 1 149
[4] Resch K J, Walther P and Zeilinger A 2005 Phys. Rev. Lett. 94 070402
[5] Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 70 1244
[6] Hradil Z 1997 Phys. Rev. A 55 R1561
[7] Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R and Carleo G 2018 Nat. Phys. 14 447
[8] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[9] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[10] Dressel J, Malik M, Miatto F M, Jordan A N and Boyd R W 2014 Rev. Mod. Phys. 86 307
[11] Ritchie N W M, Story J G and Hulet R G 1991 Phys. Rev. Lett. 66 1107
[12] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[13] Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822
[14] Hosten O and Kwiat P 2008 Science 319 787
[15] Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401
[16] Zilberberg O, Romito A and Gefen Y 2011 Phys. Rev. Lett. 106 080405
[17] Huang J 2017 Acta Phys. Sin. 66 010301 (in Chinese)
[18] Wang M J and Xia Y J 2015 Acta Phys. Sin. 64 240303 (in Chinese)
[19] Wu C W, Zhang J, Xie Y, Ou B Q, Chen T, Wu W and Chen P X 2019 Phys. Rev. A 100 062111
[20] Pan Y, Zhang J, Cohen E, Wu C W, Chen P X and Davidson N 2020 Nat. Phys. 16 1206
[21] Qiu J D, Ren C L and Li Z X 2020 Chin. Phys. B 29 064214
[22] Lundeen J and Resch K 2005 Phys. Lett. A 334 337
[23] Salvail J Z, Agnew M, Johnson A S, Bolduc E, Leach J and Boyd R W 2013 Nat. Photon. 7 316
[24] Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J and Boyd R W 2014 Nat. Commun. 5 3115
[25] Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K and Steinberg A M 2011 Science 332 1170
[26] Thekkadath G S, Giner L, Chalich Y, Horton M J, Banker J and Lundeen J S 2016 Phys. Rev. Lett. 117 120401
[27] Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402
[28] Bolduc E, Gariepy G and Leach J 2016 Nat. Commun. 7 10439
[29] Qin L, Xu L, Feng W and Li X Q 2017 New J. Phys. 19 033036
[30] Bamber C and Lundeen J S 2014 Phys. Rev. Lett. 112 070405
[31] Shojaee E, Jackson C S, Riofrío C A, Kalev A and Deutsch I H 2018 Phys. Rev. Lett. 121 130404
[32] Fischbach J and Freyberger M 2012 Phys. Rev. A 86 052110
[33] Mirhosseini M, Maga na Loaiza O S, Hashemi Rafsanjani S M and Boyd R W 2014 Phys. Rev. Lett. 113 090402
[34] Vallone G and Dequal D 2016 Phys. Rev. Lett. 116 040502
[35] Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y and Sponar S 2017 Phys. Rev. Lett. 118 010402
[36] Calderaro L, Foletto G, Dequal D, Villoresi P and Vallone G 2018 Phys. Rev. Lett. 121 230501
[37] Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F and Guo G C 2019 Phys. Rev. Lett. 123 150402
[38] Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C and Zhang Y S 2020 Phys. Rev. A 101 012119
[39] Zhang S, Zhou Y, Mei Y, Liao K, Wen Y L, Li J, Zhang X D, Du S, Yan H and Zhu S L 2019 Phys. Rev. Lett. 123 190402
[40] Wen Y L, Zhang S, Yan H and Zhu S L 2021 Acta Phys. Sin. 70 110301 (in Chinese)
[41] Maccone L and Rusconi C C 2014 Phys. Rev. A 89 022122
[42] Durt T, Englert B G, Bengtsson I and Życzkowski K 2010 Inter. J. Quantum Inf. 8 535
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[4] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[5] A rational quantum state sharing protocol with semi-off-line dealer
Hua-Li Zhang(张花丽), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Yu Yang(杨榆), and Xiu-Bo Chen(陈秀波). Chin. Phys. B, 2022, 31(5): 050309.
[6] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[7] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[8] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[9] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[10] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[11] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[12] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[13] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[14] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[15] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
No Suggested Reading articles found!