1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract The high-purity single-photon source plays an important role in the field of quantum information. Usually, it is generated through spontaneous parametric down-conversion process. In this paper, we investigate and summarize a few approaches on obtaining single-photon sources with a high purity using either PPKTP or PPLN nonlinear crystals. Moreover, we present improved schemes to increase the purity based on existing work, corresponding applicable conditions and procedures are discussed and analyzed. Besides, we carry out numerical simulations and show that nearly perfect purity can be reached even without using any filters. Therefore, this work might provide valuable references for the generation and application of high purity single-photon sources.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306400 and 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 12074194, 11774180, and U19A2075), and the Leading-edge Technology Program of Jiangsu Natural Science Foundation, China (Grant No. BK20192001).
Corresponding Authors:
Qin Wang
E-mail: qinw@njupt.edu.cn
Cite this article:
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴) Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process 2021 Chin. Phys. B 30 070304
[1] Zhang C H, Zhang C M, Guo G C and Wang Q 2018 Opt. Express26 4219 [2] Zhang C H, Zhang C M and Wang Q 2019 Phys. Rev. A99 052325 [3] Sang M L, Lee S W, Jeong H and Park H S 2020 Phys. Rev. Lett.124 060501 [4] Mattle K, Weinfuter H, Kwiat P G and Zeilinger A 2002 Rev. Mod. Phys.74 145 [5] Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett.100 133601 [6] Meyer-Scott E, Montaut N, Tiedau J, Sansoni L, Herrmann H, Bartley T J and Silberhorn C 2017 Phys. Rev. A95 061803 [7] Brańczyk A M, Ralph T C, Helwig W and Silberhorn C 2010 New J. Phys.12 063001 [8] Christ A, Lupo C, Reichelt M, Meier T and Silberhorn C 2014 Phys. Rev. A90 023823 [9] Chen C, Cao B, Niu M Y, Xu F, Zhang Z, Shapiro J H and Wong F N C 2017 Opt. Express25 7300 [10] U'Ren A B, Silberhorn C, Erdmann R, Banaszek K, Grice W P, Walmsley I A and Raymer M G 2005 Laser Phys.15 146 [11] Mosley P J, Lundeen J S, Smith B J and Walmsley I A 2008 New J. Phys.10 093011 [12] Bruno N, Martin A, Guerreiro T, Sanguinetti B and Thew R T 2014 Opt. Express22 17246 [13] Zhang Q Y, Xue G T, Xu P, Gong Y X, Xie Z and Zhu S 2018 Phys. Rev. A97 022327 [14] Kaneda F, Palmett K G, U'Ren A B and Kwiat P G 2016 Opt. Express24 10733 [15] Jin R B, Shimizu R, Wakui K, Benichi H and Sasaki M 2013 Opt. Express 21 10659 [16] Jin R B, Shimizu R, Wakui K, Fujiwara M, Yamashita T, Miki S, Terai S, Wang Z and Sasaki M 2014 Opt. Express22 11498 [17] Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, Yamashita T, Miki S, Terai H, Shimizu R, Takeoka M and M. Sasaki 2015 Opt. Express23 28836 [18] Jin R B, Cai N, Huang Y, Hao X Y, Wang S, Li F, Song H Z, Zhou Q and Shimizu R 2019 Phys. Rev. Appl.11 034067 [19] Weston M M, Chrzanowski H M, Wollmann S, Boston A, Ho J, Shalm L K, Verma V B, Allman M S, Nam S W, Patel R B, Slussarenko S and Pryde G J 2016 Opt. Express24 10869 [20] Giovannetti V, Maccone L, Shapiro J H and Wong F N C 2002 Phys. Rev. Lett.88 183602 [21] Graffitti F, Kelly-Massicotte J, Fedrizzi A and Brańczyk A M 2018 Phys. Rev. A98 053811 [22] Laudenbach F, Jin R B, Greganti C, Hentschel M, Walther P and Hübel 2017 Phys. Rev. Appl.8 024035 [23] Grobe R, Rzazewski K and Eberly J H 1994 J. Phys. B: At. Mol. Phys.27 L503 [24] Yu T and Eberly J H 2004 Phys. Rev. Lett.93 140404 [25] Keller T E and Rubin M H 1997 Phys. Rev. A56 1534 [26] Grice W P, U'Ren A B and Walmsley I A 2001 Phys. Rev. A64 063815 [27] Edamatsu K, Shimizu R, Ueno W, Jin R B, Kaneda F, Yabuno M, Suzuki H, Nagano S, Syouji A and Suizu K 2011 Prog. Inform.8 19 [28] Quesada N and Brańczyk A M 2018 Phys. Rev. A98 043813 [29] Zhou X Y, Zhang C M and Wang Q 2017 Journal of the Optical Society of America B34 1518 [30] Dmitriev V G, Gurzadyan G G and Nikogosyan D N 1999 Handbook of Nonlinear Optical Crystals 3rd edn. (Springer-Verlag Berlin Heidelberg) [31] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B91 343
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.