Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017102    DOI: 10.1088/1674-1056/23/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin–orbit interactions

S. Saríkurta b, S. ?akiro?lub, K. Akgüngörb, ?. Sökmenb
a Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, Physics Department, Tínaztepe Campus, 35390, ?zmir, Turkey;
b Dokuz Eylül University, Faculty of Science, Physics Department, Tínaztepe Campus, 35390 ?zmir, Turkey
Abstract  In this study, we investigate theoretically the effect of spin–orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magnetic field. Highly accurate numerical calculations have been carried out using a finite element method. Our results reveal that the interplay between the spin–orbit interaction and the effective magnetic field significantly modifies the band structure, producing additional subband extrema and energy gaps. Competing effects between external field and spin–orbit interactions introduce complex features in spin texturing owing to the couplings in energy subbands. We obtain that spatial modulation of the spin density along the wire width can be considerably modified by the spin–orbit coupling strength, magnetic field and charge carrier concentration.
Keywords:  spin–      orbit coupling      zeeman splitting      quantum wire      spin texture  
Received:  31 May 2013      Revised:  03 December 2013      Accepted manuscript online: 
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.70.Tj (Spin-orbit effects)  
  73.21.Hb (Quantum wires)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by Research Grants DEU-BAP:2009183 and DEU-BAP:2009184 from Scientific Research Fund of Dokuz Eylül University.
Corresponding Authors:  S. Saríkurt     E-mail:  sevil.sarikurt@deu.edu.tr

Cite this article: 

S. Saríkurt, S. Şakiroğlu, K. Akgüngör, İ. Sökmen Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin–orbit interactions 2014 Chin. Phys. B 23 017102

[1] Bader S D and Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71
[2] Fabian J, Matos-Abiaguea A, Ertlera C, Stano P and Žutić I 2007 Acta Physica Slovaca 57 565
[3] Žutić I, Fabian J and Das Sarma S 2007 Rev. Mod. Phys. 76 323
[4] Malet F, Pi M, Barranco M, Serra L and Lipparini E 2007 Phys. Rev. B 76 115306
[5] Zhang S, Liang R, Zhang E, Zhang L and Liu Y 2006 Phys. Rev. B 73 155316
[6] Knobbe J and Schäpers T 2005 Phys. Rev. B 71 035311
[7] Rashba E I 1960 Fiz. Tverd. Tela (Leningrad) 2 1224
[8] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[9] Dresselhaus G 1955 Phys. Rev. 100 580
[10] Winkler R 2003 Spin Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer-Verlag)
[11] Chang M C 2005 Phys. Rev. B 71 085315
[12] Bulaev D V and Loss D 2005 Phys. Rev. B 71 205324
[13] Krich J J and Halperin B I 2007 Phys. Rev. Lett. 98 226802
[14] Debald S and Kramer B 2005 Phys. Rev. B 71 115322
[15] Schäpers T, Guzenko V A, Bringer A, Akabori M, Hagedorn M and Hardtdegen H 2009 Semicond. Sci. Technol. 24 064001
[16] Chang R S, Chu C S and Malśhukov A G 2009 Phys. Rev. B 79 195314
[17] Schliemann J, Egues J C and Loss D 2003 Phys. Rev. Lett. 90 146801
[18] Serra L, Sánchez D and López R 2005 Phys. Rev. B 72 235309
[19] Giglberger S, Golub L E, Belkov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J,Wegscheider W, Weiss D, Prettl W and Ganichev S D 2007 Phys. Rev. B 75 035327
[20] Upadhyaya P, Pramanik S, Bandyopadhyay S and CahayM2008 Phys. Rev. B 77 045306
[21] Gujarathi S, Alam K M and Pramanik S 2012 Phys. Rev. B 85 045413
[22] Governale M and Zülicke U 2002 Phys. Rev. B 66 073311
[23] Governale M and Zülicke U 2004 Solid State Commun. 131 581
[24] Moroz A V and Barnes C H W 1999 Phys. Rev. B 60 14272
[25] Moroz A V and Barnes C H W 2000 Phys. Rev. B 61 R2464
[26] Mireles F and Kirczenow G 2001 Phys. Rev. B 64 024426
[27] Perroni C A, Bercioux D, Ramaglia V M and Cataudella V 2007 J. Phys.: Condens. Matter 19 186227
[28] Pramanik S, Bandyopadhyay S and Cahay M 2007 Phys. Rev. B 76 155325
[29] Zhang T Y, Zhao W and Liu X M 2009 J. Phys.: Condens. Matter 21 335501
[30] Erlingsson S I, Egues J C and Loss D 2010 Phys. Rev. B 82 155456
[31] Gharaati A and Khordad R 2012 Opt. Quantum Electron. 44 425
[32] Guzenko V A, Bringer A, Knobbe J, Hardtdegen H and Schäpers T 2007 Appl. Phys. A 87 577
[33] Schäpers T, Knobbe J, Guzenko V A and van der Hart A 2004 Physica E 21 933
[34] Schäpers T, Knobbe J and Guzenko V A 2004 Phys. Rev. B 69 235323
[35] Pask J E, Klein B M, Sterne P A and Fong C Y 2001 Comput. Phys. Commun. 135 1
[36] Ram-Mohan L R 2002 Finite Element and Boundary Element Applications in Quantum Mechanics (London: Oxford University Press)
[37] Upadhyaya P, Pramanik S and Bandyopadhyay S 2008 Phys. Rev. B 77 155439
[38] Malet F, Pi M, Barranco M and Lipparini E 2005 Phys. Rev. B 72 205326
[39] Cummings A W 2009 The Spin Hall Effect in Quantum Wires (Ph.D. Thesis) (Arizona State University)
[40] Camenzind L 2012 Quantum Transport Signatures of Electric Dipole Spin Resonance Near the Persistent Spin Helix in GaAs Quantum Wells (M.Sc. Thesis) (Basel: University of Basel)
[41] Meier L, Salis G, Gini E, Shorubalko I and Ensslin K 2008 Phys. Rev. B 77 035305
[42] Studer M, Walser M P, Baer S, Rusterholz H, Schön S, Schuh D, Wegscheider W, Ensslin K and Salis G 2010 Phys. Rev. B 82 235320
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[14] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!