Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017103    DOI: 10.1088/1674-1056/23/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of the 3d transition metal doping on the structural, electronic, and magnetic properties of BeO nanotubes

Zhang Jian-Min (张建民)a, Song Wan-Ting (宋婉婷)a, Li Huan-Huan (李欢欢)a, Xu Ke-Wei (徐可为)b, Ji Vincentc
a College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China;
b State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China;
c ICMMO/LEMHE, Université Paris-Sud 11, 91405 Orsay Cedex, France
Abstract  First-principles calculations have been performed on the structural, electronic, and magnetic properties of seven 3d transition-metal (TM) impurities (V, Cr, Mn, Fe, Co, Ni, and Cu) doped armchair (5,5) and zigzag (8,0) beryllium oxide nanotubes (BeONTs). The results show that there exists a structural distortion around the 3d TM impurities with respect to the pristine BeONTs. The magnetic moment increases for V- and Cr-doped BeONTs and reaches a maximum for Mn-doped BeONT, and then decreases for Fe-, Co-, Ni-, and Cu-doped BeONTs successively, consistent with the predicted trend of Hund’s rule to maximize the magnetic moments of the doped TM ions. However, the values of the magnetic moments are smaller than the predicted values of Hund’s rule due to the strong hybridization between the 2p orbitals of the near O and Be ions of BeONTs and the 3d orbitals of the TM ions. Furthermore, the V-, Co-, and Ni-doped (5,5) and (8,0) BeONTs with half-metal ferromagnetism and thus 100% spin polarization character are good candidates for spintronic applications.
Keywords:  BeO nanotubes      transition-metal atoms      half-metal ferromagnets      first-principles calculation  
Received:  24 April 2013      Revised:  02 July 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.Fg (Nanotubes)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB631002) and the National Natural Science Foundation of China (Grant Nos. 51071098, 11104175, and 11214216).
Corresponding Authors:  Zhang Jian-Min     E-mail:  jianm_zhang@yahoo.com

Cite this article: 

Zhang Jian-Min (张建民), Song Wan-Ting (宋婉婷), Li Huan-Huan (李欢欢), Xu Ke-Wei (徐可为), Ji Vincent Effects of the 3d transition metal doping on the structural, electronic, and magnetic properties of BeO nanotubes 2014 Chin. Phys. B 23 017103

[1] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[2] Kämper K P, Schmitt W, Güntherodt G, Gambino R J and Ruf R 1987 Phys. Rev. Lett. 59 2788
[3] Watts S M, Wirth S, von Molnár, Barry A and Coey J M D 2000 Phys. Rev. B 61 9621
[4] Tan M Q and Tao X M 1999 Chin. Phys. Lett. 16 199
[5] Ishida S, Masaki T, Fujii S and Asano S 1998 Physica B 245 1
[6] Picozzi S, Continenza A and Freeman A J 2002 Phys. Rev. B 66 094421
[7] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[8] Akinaga H, Manago T and Shirai M 2000 Jpn. J. Appl. Phys. 39 L1118
[9] Ohno H 1998 Science 281 951
[10] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79 988
[11] Munekata H, Ohno H, von Molnar S, Segmüller A, Chang L L and Esaki L 1989 Phys. Rev. Lett. 63 1849
[12] Kitchen D, Richardella A, Tang J M, Flatté M E and Yazdani A 2006 Nature 442 436
[13] Sorokin P B, Fedorov A S and Chernozatonskii L A 2006 Phys. Solid State 48 398
[14] Baumeier B, Krüger P and Pollmann J 2007 Phys. Rev. B 76 085407
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[17] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Alam K M and Ray A K 2008 Phys. Rev. B 77 035436
[23] Baumeier B, Krüger P and Pollmann J 2007 Phys. Rev. B 76 085407
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!