Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057501    DOI: 10.1088/1674-1056/22/5/057501
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Review of magnetocaloric effect in perovskite-type oxides

Zhong Wei (钟伟)a, Au Chak-Tong (区泽棠)b, Du You-Wei (都有为)a
a National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
b Chemistry Department, Hong Kong Baptist University, Hong Kong, China
Abstract  We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO3-type manganese oxides, A3B2O7-type two-layered perovskite oxides, and A2B'B''O6-type ordered double-perovskite oxides). Magnetic entropy changes larger than those of gadolinium can be observed in polycrystalline La1-xCaxMnO3 and alkali-metal (Na or K) doped La0.8Ca0.2MnO3 perovskite-type manganese oxides. The large magnetic entropy change produced by an abrupt reduction of magnetization is attributed to the anomalous thermal expansion at the Curie temperature. Considerable magnetic entropy changes can also be observed in two-layered perovskites La1.6Ca1.4Mn2O7 and La2.5-xK0.5+xMn2O7+δ (0 < x < 0.5), and double-perovskite Ba2Fe1+xMo1-xO6 (0 ≤ x ≤ 0.3) near their respective Curie temperatures. Compared with rare earth metals and their alloys, the perovskite-type oxides are lower in cost, and they exhibit higher chemical stability and higher electrical resistivity, which together favor lower eddy-current heating. They are potential magnetic refrigerants at high temperatures, especially near room temperature.
Keywords:  perovskite-type oxides      magnetocaloric effect      magnetic entropy change      magnetic phase transition  
Received:  22 February 2013      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Bb (Fe and its alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174132), the National Basic Research Program of China (Grant Nos. 2011CB922102 and 2012CB932304), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Zhong Wei     E-mail:  wzhong@nju.edu.cn

Cite this article: 

Zhong Wei (钟伟), Au Chak-Tong (区泽棠), Du You-Wei (都有为) Review of magnetocaloric effect in perovskite-type oxides 2013 Chin. Phys. B 22 057501

[1] Gschneidner Jr K A and Pecharsky V K 2000 Mater. Sci. Eng. A 287 301
[2] Gschneidner Jr K A and Pecharsky V K 1999 J. Appl. Phys. 85 5365
[3] Pecharsky V K, Gschneidner Jr K A and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[4] Debye P 1926 Ann. Physik. 386 1154
[5] Giauque W F 1927 J. Am. Chem. Soc. 49 1870
[6] Giauque W F and MacDougall D P 1933 Phys. Rev. 43 768
[7] Barclay J A, Jaeger S R and Prenger F C 1990 Adv. Cryog. Eng. B 35 1097
[8] Prenger F C, Hill D D, Trueblood J, Servais T, Laatsch J and Barcaly J A 1990 Adv. Cryog. Eng. B 35 1105
[9] Hashimoto T, Numasawa T, Shino M and Okada T 1981 Cryogenics 21 647
[10] Brown G V 1976 J. Appl. Phys. 47 3673
[11] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[12] Pecharsky V K and Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299
[13] Hu F X, Shen B G and Sun J R 2000 Appl. Phys. Lett. 76 3460
[14] Hu F X, Shen B G, Sun J R and Wu G H 2001 Phys. Rev. B 64 132412
[15] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[16] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[17] Tegus O, Bruck E, Buschow K H J and de Boer F R 2002 Nature 415 150
[18] Kuwahara K, Tomioka Y, Moritomo Y, Asamitsu A, Kasai M, Kumai R and Tokura Y 1996 Science 272 80
[19] Radaelli P G, Cox D E, Marezio M, Cheong S W, Schiffer P E and Ramirez A P 1995 Phys. Rev. Lett. 75 4488
[20] Dai P, Zhang J D, Mook H A, Liou S H, Dowben P A and Plummer E W 1996 Phys. Rev. B 54 3694
[21] Ibara M R, Algarabel P A, Marquina C, Blasco J and García J 1995 Phys. Rev. Lett. 75 3541
[22] Argyriou D N, Mitchell J F, Potter C D, Hinks D G, Jorgense J D and Bader S D 1996 Phys. Rev. Lett. 76 3826
[23] Guo Z B, Zhang J R, Huang H, Ding W P and Y W Du 1997 Appl. Phys. Lett. 70 904
[24] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142
[25] Von Helmolt R, Wecker J, Holzapfel B, Schultz L and Samwer K 1993 Phys. Rev. Lett. 71 2331
[26] Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994 Scicnce 264 413
[27] Schiffer P, Ramirez A P, Bao W and Cheong S W 1995 Phys. Rev. Lett. 75 3336
[28] Hwang H Y, Cheong S W, Radaelli P G, Marezio M and Batlogg B 1995 Phys. Rev. Lett. 75 914
[29] Moritomo Y, Asamitsu A and Tokura Y 1995 Phys. Rev. B 51 16491
[30] Arnold Z, Kamenev K, Ibarra M R, Algarabel P A, Marquina C, Blasco J and García J 1995 Appl. Phys. Lett. 67 2875
[31] Kuwahara H, Tomioka Y, Moritomo Y, Asamitsu A, Kasai M, Kumai R and Tokura Y 1996 Science 272 80
[32] Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A and Yayama H 1987 J. Appl. Phys. 62 3873
[33] Morelli D T, Mance A M, Mantese J V and Micheli A L 1996 J. Appl. Phys. 79 373
[34] Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W and Bohigas X 1996 Appl. Phys. Lett. 69 3596
[35] Lin G C, Wei Q and Zhang J X 2006 J. Magn. Magn. Mater. 300 392
[36] Zhong W, Chen W, Ding W P, Zhang N, Du Y W and Yan Q J 1998 Solid State Commun. 106 55
[37] Zhong W, Chen W, Ding W P, Zhang N, Hu A, Du Y W and Yan Q J 1998 Eur. Phys. J. B 3 169
[38] Zhong W, Chen W, Ding W P, Zhang N, Hu A, Du Y W and Yan Q J 1999 J. Magn. Magn. Mater. 195 112
[39] Tang T, Gu K M, Cao Q Q, Wang D H, Wang S Y, Zhang S Y and Du Y W 2000 J. Magn. Magn. Mater. 222 110
[40] Zhong W, Chen W, Wang J H and Du Y W 2001 Chin. Phys. Lett. 18 1114
[41] Damay F, Martin C, Martin A and Raveau B 1997 J. Appl. Phys. 81 1372
[42] Rodriguez-Martinez L M and Attfield J P 1996 Phys. Rev. B 54 15622
[43] Akther Hossain A K M, Cohen L F, Kodenkandeth T, MacManus-Driscoll J and McNalford N 1999 J. Magn. Magn. Mater. 195 31
[44] Abdelmoula N, Guidara K, Cheikh-Rouhou A, Dhahri E and Joubert J C 2000 J. Solid State Chem. 151 139
[45] Millis A J, Littlewood P B and Shraiman B I 1995 Phys. Rev. Lett. 74 5144
[46] Zhong W, Chen W, Au C T and Du Y W 2003 J. Magn. Magn. Mater. 261 238
[47] Hou D L, Bai Y, Xu J, Tang G D and Nie X F 2004 J. Alloys Compd. 384 62
[48] Phan M H, Yu S C and Hur N H 2003 J. Magn. Magn. Mater. 262 407
[49] Phan M H, Yu S C, Moon Y M and Hur N H 2004 J. Magn. Magn. Mater. 272-276 E503
[50] Chen W, Zhong W, Hou D L, Gao R W, Feng W C, Zhu M G and Du Y W 2002 J. Phys. Condens. Mater. 14 11889
[51] Jia L, Liu G J, Wang J Z, Sun J R, Zhang H W and Shen B G 2006 Appl. Phys. Lett. 89 122515
[52] Liu G J, Sun J R, Wang J Z and Shen B G 2006 Appl. Phys. Lett. 89 222503
[53] Liu G J, Sun J R, Wang J Z, Zhao T Y and Shen B G 2007 J. Phys. Condens. Matter 19 466215
[54] Moritomo Y, Tomioka Y, Asamitsu A, Tokura Y and Matsui Y 1996 Nature 380 141
[55] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M and Tokura Y 1996 Science 274 1698
[56] Argyiou D N, Mitchell J F, Goodenough J B, Chmaissem O, Short S and Jorgensen J D 1997 Phys. Rev. Lett. 78 1568
[57] Mitchell J F, Argyiou D N, Jorgensen J D, Hinks D G, Potter C D and Bader S D 1997 Phys. Rev. B 55 63
[58] Potter C D, Swiatek M, Bader S D, Argyiou D N, Mitchell J F, Miller D J, Hinks D G and Jorgensen J D 1998 Phys. Rev. B 57 72
[59] Mahesh R, Wang R and Itoh M 1998 Phys. Rev. B 57 104
[60] Kimura T, Asamitsu A, Tomioka Y and Tokura Y 1997 Phys. Rev. Lett. 79 3720
[61] Kimura T, Kumai R, Tokura Y, Li J Q and Matsui Y 1998 Phys. Rev. B 58 11081
[62] Hayashi T, Miura N, Tokunaga M, Kimura T and Tokura Y 1998 J. Phys.: Condens. Matter 10 11525
[63] Argyiou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M and Jorgensen J D 1999 Phys. Rev. B 59 8695
[64] Ling C D, Millburn J E, Mitchell J F, Argyiou D N, Linton J and Bordallo H N 2000 Phys. Rev. B 62 15096
[65] Suryanarayanan R, Dhalenne G, Revcolevschi A, Prellier W, Renard J P, Dupas C, Caliebe W and Chatterji T 1999 Solid State Commun. 113 267
[66] Zhong W, Chen W, Jiang H Y, Liu X S, Au C T and Du Y W 2002 Eur. Phys. J. B 30 331
[67] Zhong W, Liu W, Liu X S, Jiang H Y, Au C T and Du Y W 2003 Phys. Stat. Sol. (a) 195 440
[68] Zhou T J, Yu Z, Zhong W, Xu X N, Zhang H H and Du Y W 1999 J. Appl. Phys. 85 7975
[69] Zhu H, Song H and Zhang Y H 2002 Appl. Phys. Lett. 81 3416
[70] Woodward P, Hoffmann R D and Sleight A W 1994 J. Mater. Res. 9 2118
[71] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[72] Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549
[73] Yanagihara H, Cheong W, Salamon M B, Xu S and Moritomo Y 2002 Phys. Rev. B 65 092411
[74] Huang Y H, Karppinen M, Yamauchi H and Goodenough J B 2006 Phys. Rev. B 73 104408
[75] Kobayashi K I, Kimura T, Tomioka Y, Sawada H, Terakura K and Tokura Y 1999 Phys. Rev. B 59 11159
[76] Kato H, Okuda T, Okimoto Y, Tomioka Y, Oikawa K, Kamiyama T and Tokura Y 2002 Phys. Rev. B 65 144404
[77] De Teresa J M, Serrate D, Blasco J, Ibarra M R and Morellon L 2004 Phys. Rev. B 69 144401
[78] Asano H, Kozuka N, Tsuzuki A and Matsui M 2004 Appl. Phys. Lett. 85 263
[79] Vaitheeswaran G, Kanchana V and Delin A 2005 Appl. Phys. Lett. 86 032513
[80] Philipp J B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D and Sarma D D 2003 Phys. Rev. B 68 144431
[81] Kawanaka H, Hase I, Toyama S and Nishihara Y 2000 Phys. B 281 518
[82] Moritomo Y, Xu S, Machida A, Akimoto T, Nishibori E, Takata M and Sakata M 2001 Phys. Rev. B 63 144425
[83] Viola M C, Martinez-Lope M J, Alonso J A, Martinez J L, Paoli J M De, Pagola S, Pedregosa J C, Fernandez-Diaz M T and Carbonio R E 2003 Chem. Mater. 15 1655
[84] Kuz'min E V, Ovchinnikov S G and Singh D J 2003 Phys. Rev. B 68 024409
[85] Lindén J, Yamamoto T, Karppinen M and Yamauchi H 2000 Appl. Phys. Lett. 76 2925
[86] Karppinen M, Yamauchi H, Yasukawa Y, Lindén J, Chan T S, Liu R S and Chen J M 2003 Chem. Mater. 15 4118
[87] Kang J S, Kim J H, Sekiyama A, Kasai S, Suga S, Han S W, Kim K H, Muro T, Saitoh Y, Hwang C, Olson C G, Park B J, Lee B W, Shim J H, Park J H and Min B I 2002 Phys. Rev. B 66 113105
[88] Feng X M, Rao G H, Liu G Y, Liu W F, Ouyang Z W and Liang J K 2004 J. Phys.: Condens. Matter 16 1813
[89] Zhong W, Tang N J, Wu X L, Liu W, Chen W, Jiang H Y and Du Y W 2004 J. Magn. Magn. Mater. 282 151
[90] Zhong W, Liu W, Au C T, Lv L Y and Du Y W 2006 J. Magn. Magn. Mater. 303 E212
[91] Zhong W, W Liu, Au C T and Du Y W 2006 Nanotechnology 17 250
[92] Zhong W, Tang N J, Au C T and Du Y W 2007 IEEE Trans. Mag. 43 3079
[93] Zhong W, Tang N J, Au C T and Du Y W 2008 J. Nanosci. Nanotechnol. 8 2793
[94] Ogale A S, Ogale S B, Ramesh R and Venkatesan T 1999 Appl. Phys. Lett. 75 537
[95] Balcells LI, Navarro J, Bibes M, Roig A, Martínez B and Fontcuberta J 2001 Appl. Phys. Lett. 78 781
[96] Sakuma H, Taniyama T, Kitamoto Y and Yamazaki Y 2003 J. Appl. Phys. 93 2816
[97] Lee W Y, Han H, Kim S B, Kim C S and Lee B W 2003 J. Magn. Magn. Mater. 254-255 577
[98] Tovar M, Causa M T, Butera A, Navarro J, Martínez B, Fontcuberta J and Passeggi M C G 2002 Phys. Rev. B 66 024409
[99] Serrate D, de Teresa J, Blasco J, Ibarra M, Morellon L and Ritter C 2002 Appl. Phys. Lett. 80 4573
[100] Navarro J, Fontcuberta J, Izquierdo M, Avila J and Asensio M C 2004 Phys. Rev. B 69 115101
[101] Frontera C and Fontcuberta J 2004 Phys. Rev. B 69 014406
[102] Topwal D, Sarma D D, Kato H, Tokura Y and Avignon M 2006 Phys. Rev. B 73 094419
[103] Kim J, Sung J G, Yang H M and Lee B W 2004 J. Magn. Magn. Mater. 290-291 1009
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[10] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[11] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[12] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[15] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
No Suggested Reading articles found!