Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017502    DOI: 10.1088/1674-1056/22/1/017502
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds

Shen Bao-Gen (沈保根), Hu Feng-Xia (胡凤霞), Dong Qiao-Yan (董巧燕), Sun Ji-Rong (孙继荣)
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an increase of the aluminum content, the compounds exhibit successively an antiferromagnetic (AFM) state, a ferromagnetic (FM) state, and a mictomagnetic state. Furthermore, the AFM coupling of LaFe13-xAlx can be converted to an FM one by substituting Si for Al, Co for Fe, and magnetic rare-earth R for La, or introducing interstitial C or H atoms. However, low doping levels lead to FM clusters embedded in an AFM matrix, and the resultant compounds can undergo, under appropriate applied fields, first an AFM-FM and then an FM-AFM phase transition while heated, with significant magnetic relaxation in the vicinity of the transition temperature. The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co, C, or H, and a strong magnetocaloric effect can be obtained around the transition temperature. For example, for the LaFe11.5Al1.5C0.2H1.0 compound, the maximal entropy change reaches 13.8 J·kg-1·K-1 for a field change of 0-5 T, occurring around room temperature. It is 42% higher than that of Gd, and therefore, this compound is a promising room-temperature magnetic refrigerant.
Keywords:  La(Fe,Al)13 compounds      magnetocaloric effect      magnetic entropy change      magnetic phase transition  
Received:  28 November 2012      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Bb (Fe and its alloys)  
Fund: Project supported by the National Natural Science Foundation of China, the Key Research Program of the Chinese Academy of Sciences, the National Basic Research Program of China, and the National High Technology Research and Development Program of China.
Corresponding Authors:  Shen Bao-Gen     E-mail:  shenbg@aphy.iphy.ac.cn

Cite this article: 

Shen Bao-Gen (沈保根), Hu Feng-Xia (胡凤霞), Dong Qiao-Yan (董巧燕), Sun Ji-Rong (孙继荣) Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds 2013 Chin. Phys. B 22 017502

[1] Warburg E 1881 Ann. Phys. 13 141
[2] Brown G V 1976 J. Appl. Phys. 47 3673
[3] Lee J S 2004 Phys. Stat. Sol. (b) 241 1765
[4] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[5] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997Phys. Rev. Lett. 78 1142
[6] Hu F X, Shen B G and Sun J R 2000 Appl. Phys. Lett. 76 3460
[7] Hu F X, ShenB G, Sun J R and Wu G H 2001 Phys. Rev. B 64 132412
[8] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[9] Tegus O, Bruck E, Buschow K H J and de Boer F R 2002 Nature 415150
[10] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[11] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001Appl. Phys. Lett. 78 3675
[12] Zhang HW,Wang F, Zhao T Y, Zhang S Y, Sun J R and Shen B G 2004Phys. Rev. B 70 212402
[13] Wang F W, Wang G J, Hu F X, Kurbakov A, Shen B G and Cheng Z H2003 J. Phys.: Condens. Matter 15 5269
[14] Di N L, Cheng Z H, Li Q A, Wang G J, Kou Z Q, Ma X, Luo Z, Hu FX and Shen B G 2004 Phys. Rev. B 69 224411
[15] Wang G J, Wang F, Di N L, Shen B G and Cheng Z H 2006 J. Magn.Magn. Mater. 303 84
[16] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv.Mater. 21 4545
[17] Hu F X, Shen B G, Sun J R, Wang G J and Cheng Z H 2002 Appl. Phy.Lett. 80 826
[18] Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J and SunJ R 2002 Chin. Phys. 11 741
[19] Chen Y F, Wang F, Shen B G, Hu F X, Sun J R, Wang G J and ChengZ H 2003 J. Phys.: Condens. Matter 15 L161
[20] Wang F, Chen Y F, Wang G J, Sun J R and Shen B G 2003 Chin. Phys.12 911
[21] Chen Y F, Wang F, Shen B G, Hu F X, Sun J R, Wang G J and ChengZ H 2003 J. Appl. Phys. 93 1323
[22] Zhao J L, Shen J, Hu F X, Li Y X, Sun J R and Shen B G 2010 J. Appl.Phys. 107 113911
[23] Shen J and Zhao J L 2012 J. Appl. Phys. 111 07A908
[24] Zhao J L, Shen J, Zhang H, Xu Z Y, Wu J F, Hu F X, Sun J R and ShenB G 2012 J. Alloys Compd. 520 277
[25] Palstra T T M, Nieuwenhuys G J, Mydosh J A and Buschow K H J1984 J. Appl. Phys. 55 2367
[26] Helmholdt R B, Palstra T T M, Nieuwenhuys G J, Mydosh J A, van derKraan A M and Buschow K H J 1986 Phys. Rev. B 34 169
[27] Palstra T T M, Nieuwenhuys G J, Mydosh J A and Buschow K H J1985 Phys. Rev. B 31 4622
[28] Palstra T T M, Werij H G C, Nieuwenhuys G J, Mydosh J A, de BoerF R and Buschow K H J 1984 J. Phys. F: Met. Phys. 14 1961
[29] Shcherbakova Ye V, Korolyov A V and Podgornykh SM2001 J. Magn.Magn. Mater. 237 147
[30] Hu F X, Shen B G, Sun J R, Cheng Z H and Zhang X X 2000 J. Phys.:Condens. Matter 12 L691
[31] Hu F X, Shen B G, Sun J R and Cheng Z H 2001 Phys. Rev. B 64012409
[32] Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y and MatsubaraE 2001 J. Alloy Compd. 316 70
[33] Hu F X, Wang G J, Wang J, Sun Z G, Dong C, Chen H, Zhang X X,Sun J R, Cheng Z H and Shen B G 2002 J. Appl. Phys. 91 7836
[34] Wang F, Chen Y F, Wang G J, Sun J R and Shen B G 2004 J. Phys.:Condens. Matter 16 2103
[35] Liu X B, Altounian Z and Ryan D H 2004 J. Phys. D: Appl. Phys. 372469
[36] Irisawa K, Fujita A, Fukamichi K, Yamada M, Mitamura H, Goto Tand Koyama K 2004 Phys. Rev. B 70 214405
[37] Liu G J, Sun J R, Zhao T Y and Shen B G 2006 Solid State Commun.140 45
[38] Zhang H W, Chen J, Liu G J, Zhang L G, Sun J R and Shen B G 2006Phys. Rev. B 74 212408
[39] Chen J, Zhang H W, Zhang L G, Sun J R and Shen B G 2007 J. Appl.Phys. 102 113905
[40] Wang F, Wang G J, Sun J R and Shen B G 2008 Chin. Phys. B 17 3087
[41] Hu F X, Shen B G, Sun J R, Pakhomov A B, Wong C Y, Zhang XX, Zhang S Y, Wang G J and Cheng Z H 2001 IEEE Transactions onMagnetics 37 2328
[42] Wang G J, Hu F X, Wang F and Shen B G 2004 Chin. Phys. 13 546
[43] Wang F, Zhang J, Chen Y F, Wang G J, Sun J R and Shen B G 2004Phys. Rev. B 69 094424
[44] Dong Q Y, Zhang HW, Sun J R and Shen B G 2008 J. Phys.: Condens.Matter 20 135205
[45] Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X and Shen B G2007 Appl. Phys. Lett. 90 032507
[46] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21693
[47] Shen J, Li Y X, Gao B, Sun J R and Shen B G 2007 J. Magn. Magn.Mater. 310 2823
[48] Wang F 2005 Magnetic and Magnetocaloric Properties in NaZn13-typeLa(Fe, M)13 Compounds (PhD thesis) (Beijing: Institute of Physics,Chinese Academy of Sciences) (in Chinese)
[49] Dong Q Y, Chen J, Zhang H W, Sun J R and Shen B G 2008 J. Phys.:Condens. Matter 20 275235
[50] Perez-Reche F J, Stipcich M, Vives E, Manosa L, Planes A and MorinM 2004 Phys. Rev. B 69 064101
[51] Chen J, Zhang HW, Zhang L G, Dong Q Y andWang RW2006 Chin.Phys. 15 0845
[52] Chen J, Dong Q Y, Zhang H W, Zhang L G, Sun J R and Shen B G2009 J. Magn. Magn. Mater. 321 3217
[53] Wang F, Chen Y E, Wang G J, Sun J R and Shen B G 2004 Chin. Phys.B 13 393
[54] Zhao J L, Shen J, Shen B G, Hu F X and Sun J R 2010 Solid StateCommun. 150 2329
[55] Wang G J, Wang F and Shen B G 2005 Acta Phys. Sin. 54 1410 (inChinese)
[56] Wang G J 2004 Magnetic Properties, Hyperfine Interactions, andPhysics of Magnetic Entropy Change in La(Fe, M)13 Compounds (PhDthesis) (Beijing: Institute of Physics, Chinese Academy of Sciences)(in Chinese)
[57] Stearns M B 1971 Phys. Rev. B 4 4081
[58] Blügel S, Akai H, Zeller R and Dederichs P H 1987 Phys. Rev. B 353271
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[10] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[11] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[12] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[15] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
No Suggested Reading articles found!