Special Issue:
TOPICAL REVIEW — Low-dimensional nanostructures and devices
|
TOPICAL REVIEW—Low-dimensional nanostructures and devices |
Prev
Next
|
|
|
Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates |
Huang Li (黄立)a b, Xu Wen-Yan (徐文焱)a, Que Yan-De (阙炎德)a, Mao Jin-Hai (毛金海)a, Meng Lei (孟蕾)a, Pan Li-Da (潘理达)a, Li Geng (李更)a, Wang Ye-Liang (王业亮)a, Du Shi-Xuan (杜世萱)a, Liu Yun-Qi (刘云圻)b, Gao Hong-Jun (高鸿钧)a |
a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercalation, seven different metals have been successfully intercalated at the interface of graphene/Ru(0001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(0001) and on Ir(111), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.
|
Received: 30 July 2013
Accepted manuscript online:
|
PACS:
|
68.65.Pq
|
(Graphene films)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600, 2011CB932700, 2009CB929103, and 2010CB923004), the National Natural Science Foundation of China, and the Chinese Acedemy of Sciences. |
Corresponding Authors:
Gao Hong-Jun
E-mail: hjgao@iphy.ac.cn
|
Cite this article:
Huang Li (黄立), Xu Wen-Yan (徐文焱), Que Yan-De (阙炎德), Mao Jin-Hai (毛金海), Meng Lei (孟蕾), Pan Li-Da (潘理达), Li Geng (李更), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Liu Yun-Qi (刘云圻), Gao Hong-Jun (高鸿钧) Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates 2013 Chin. Phys. B 22 096803
|
[1] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[2] |
Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
|
[3] |
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
|
[4] |
Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
|
[5] |
Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[6] |
Sutter P, Hybertsen M S, Sadowski J T and Sutter E 2009 Nano Lett. 9 2654
|
[7] |
Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
|
[8] |
Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
|
[9] |
Marchini S, Günther S and Wintterlin J 2007 Phys. Rev. B 76 075429
|
[10] |
Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
|
[11] |
Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
|
[12] |
Dedkov Y S, Fonin M, Rudiger U and Laubschat C 2008 Phys. Rev. Lett. 100 107602
|
[13] |
N’Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
|
[14] |
Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
|
[15] |
Sutter P W, Albrecht P M and Sutter E A 2010 Appl. Phys. Lett. 97 213101
|
[16] |
Shikin A M, Prudnikova G V, Adamchuk V K, Moresco F and Rieder K H 2000 Phys. Rev. B 62 13202
|
[17] |
Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
|
[18] |
Enderlein C, Kim Y S, Bostwick A, Rotenberg E and Horn K 2010 New J. Phys. 12 033014
|
[19] |
Farías D, Shikin A M, Rieder K H and Dedkov Y S 1999 J. Phys.: Condens. Matter 11 8453
|
[20] |
Starodubov A G, Medvetski M A, Shikin A M and Adamchuk V K 2004 Physics of the Solid State 46 1340
|
[21] |
Dedkov Y, Shikin A, Adamchuk V, Molodtsov S, Laubschat C, Bauer A and Kaindl G 2001 Phys. Rev. B 64 035405
|
[22] |
Sutter P, Sadowski J T and Sutter E A 2010 J. Am. Chem. Soc. 132 8175
|
[23] |
Zhang H, Fu Q, Cui Y, Tan D L and Bao X H 2009 J. Phys. Chem. C 113 8296
|
[24] |
Premlal B, Cranney M, Vonau F, Aubel D, Casterman D, De Souza M M and Simon L 2009 Appl. Phys. Lett. 94 263115
|
[25] |
Huang L, Pan Y, Pan L D, Gao M, XuWY, Que Y D, Zhou H T,Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 163107
|
[26] |
Mao J H, Huang L, Pan Y, Gao M, He J, Zhou H, Guo H, Tian Y, Zou Q, Zhang L, Zhang H, Wang Y, Du S, Zhou X, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
|
[27] |
Meng L, Wu R, Zhou H, Li G, Zhang Y, Li L, Wang Y and Gao H J 2012 Appl. Phys. Lett. 100 083101
|
[28] |
Sutter E, Acharya D P, Sadowski J T and Sutter P 2009 Appl. Phys. Lett. 94 133101
|
[29] |
Corso M, Auwarter W, Muntwiler M, Tamai A, Greber T and Osterwalder J 2004 Science 303 217
|
[30] |
Zhou S Y, Gweon G H, Fedorov A V, First P N, De Heer W A, Lee D H, Guinea F, Neto A H C and Lanzara A 2007 Nat. Mater. 6 770
|
[31] |
Bostwick A, Ohta T, Seyller T, Horn K and Rotenberg E 2007 Nat. Phys. 3 36
|
[32] |
Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219
|
[33] |
Peres N M R, Klironomos F D, Tsai S W, Santos J R, dos Santos J M B L and Neto A H C 2007 Europhys. Lett. 80 67007
|
[34] |
Zhang Y, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A and Crommie M F 2008 Nat. Phys. 4 627
|
[35] |
Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J and Hornvon Hoegen M 2011 Appl. Phys. Lett. 98 141903
|
[36] |
Vanderveen J F, Himpsel F J and Eastman D E 1980 Phys. Rev. B 22 4226
|
[37] |
Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F, McCarty K and Rotenberg E 2011 Phys. Rev. B 83 125428
|
[38] |
Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
|
[39] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[40] |
Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108
|
[41] |
Rohrl J, Hundhausen M, Emtsev K V, Seyller T, Graupner R and Ley L 2008 Appl. Phys. Lett. 92 201918
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|