Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058102    DOI: 10.1088/1674-1056/ac5888
Special Issue: SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials Prev   Next  

Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5

Bin Hu(胡彬)1, Yuhan Ye(耶郁晗)1, Zihao Huang(黄子豪)1, Xianghe Han(韩相和)1, Zhen Zhao(赵振)1, Haitao Yang(杨海涛)1,3, Hui Chen(陈辉)1,2,3,†, and Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  V-based kagome materials AV3Sb5 (A=K, Rb, Cs) have attracted much attention due to their novel properties such as unconventional superconductivity, giant anomalous Hall effect, charge density wave (CDW) and pair density wave. Except for the 2a0×2a0 CDW (charge density wave with in-plane 2×2 superlattice modulation) in AV3Sb5, an additional 1×4 (4a0) unidirectional stripe order has been observed at the Sb surface of RbV3Sb5 and CsV3Sb5. However, the stability and electronic nature of the 4a0 stripe order remain controversial and unclear. Here, by using low-temperature scanning tunneling microscopy/spectroscopy (STM/S), we systematically study the 4a0 stripe order on the Sb-terminated surface of CsV3Sb5. We find that the 4a0 stripe order is visible in a large energy range. The STM images with positive and negative bias show contrast inversion, which is the hallmark for the Peierls-type CDW. In addition, below the critical temperature about 60 K, the 4a0 stripe order keeps unaffected against the topmost Cs atoms, point defects, step edges and magnetic field up to 8 T. Our results provide experimental evidences on the existence of unidirectional CDW in CsV3Sb5.
Keywords:  CsV3Sb5      4a0 stripe charge order      scanning tunneling microscopy/spectroscopy      charge density wave  
Received:  26 December 2021      Revised:  06 February 2022      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: This work was financially supported by the National Key Research and Development Project of China (Grant Nos.2018YFA0305800 and 2019YFA0308500),the National Natural Science Foundation of China (Grant Nos.61888102 and 52022105),the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB30000000 and XDB28000000),CAS Project for Young Scientists in Basic Research (Grant No.YSBR-003),and the University of Chinese Academy of Sciences.
Corresponding Authors:  Hui Chen,hchenn04@iphy.ac.cn     E-mail:  hchenn04@iphy.ac.cn
About author:  2022-2-25

Cite this article: 

Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧) Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 058102

[1] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[2] Mazin, II, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valenti R 2014 Nat. Commun. 5 4261
[3] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109
[4] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003
[5] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125
[6] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[7] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502
[8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[9] Yin J X, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443
[10] Xing Y, Shen J, Chen H, et al. 2020 Nat. Commun. 11 5613
[11] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[12] Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91
[13] Wang Q, Yin Q W and Lei H C 2020 Chin. Phys. B 29 17101
[14] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[15] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090
[16] Xu C Q, Heitmann T W, Zhang H, Xu X and Ke X 2021 Phys. Rev. B 104 024413
[17] Ma W, Xu X, Wang Z, Zhou H, Marshall M, Qu Z, Xie W and Jia S 2021 Phys. Rev. B 103 235109
[18] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[19] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[20] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[21] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[22] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[23] Yu F H, Wen X K, Gui Z G, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2022 Chin. Phys. B 31 17405
[24] Chen H, Yang H, Hu B, et al. 2021 Nature 599 222
[25] Yang H, Zhang Y, Huang Z, Zhao Z, Shi J, Qian G, Hu B, Lu Z, Zhang H, Shen C, Lin X, Wang Z, Pennycook S J, Chen H, Dong X, Zhou W and Gao H J 2021 arXiv:2110.11228
[26] Ni S, Ma S, Zhang Y, et al. 2021 Chin. Phys. Lett. 38 057403
[27] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[28] Park T, Ye M and Balents L 2021 Phys. Rev. B 104 035142
[29] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601
[30] Zhou X, Li Y, Fan X, Hao J, Dai Y, Wang Z, Yao Y and Wen H H 2021 Phys. Rev. B 104 L041101
[31] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[32] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050
[33] Shumiya N, Hossain M S, Yin J X, et al. 2021 Phys. Rev. B 104 035131
[34] Wang Z, Jiang Y X, Yin J X, et al. 2021 Phys. Rev. B 104 075148
[35] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401
[36] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353
[37] Mu C, Yin Q, Tu Z, Gong C, Zheng P, Lei H, Li Z and Luo J 2022 Chin. Phys. B 31 17105
[38] Du F, Luo S, Li R, Ortiz B R, Chen Y, Wilson S D, Song Y and Yuan H 2022 Chin. Phys. B 31 17404
[39] Ratcliff N, Hallett L, Ortiz B R, Wilson S D and Harter J W 2021 Phys. Rev. Mater. 5 L111801
[40] Li H, Jiang Y X, Yin J X, Yoon S, Lupini A R, Pai Y, Nelson C, Said A, Yang Y M, Yin Q W, Gong C S, Tu Z J, Lei H C, Yan B, Wang Z, Hasan M Z, Lee H N and Miao H 2021 arXiv:2109.03418
[41] Mallet P, Zimmermann K M, Chevalier P, Marcus J, Veuillen J Y and Rodriguez J M G 1999 Phys. Rev. B 60 2122
[42] Dai J, Calleja E, Alldredge J, Zhu X, Li L, Lu W, Sun Y, Wolf T, Berger H and McElroy K 2014 Phys. Rev. B 89 165140
[43] Hall J, Ehlen N, Berges J, van Loon E, van Efferen C, Murray C, Rösner M, Li J, Senkovskiy B V, Hell M, Rolf M, Heider T, Asensio M C, Avila J, Plucinski L, Wehling T, Grüneis A and Michely T 2019 ACS Nano 13 10210
[44] Spera M, Scarfato A, Pásztor á, Giannini E, Bowler D R and Renner C 2020 Phys. Rev. Lett. 125 267603
[45] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384
[46] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y and Wen H H 2021 Nat. Commun. 12 6727
[47] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265
[48] Yu L, Wang C, Zhang Y, et al. 2021 arXiv:2107.10714
[1] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[2] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[3] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[4] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[5] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[6] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[7] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[8] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[9] Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2
Wen Wen(文雯), Chunhe Dang(党春鹤), Liming Xie(谢黎明). Chin. Phys. B, 2019, 28(5): 058504.
[10] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[11] Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(1): 017104.
[12] Tunable charge density wave in TiS3 nanoribbons
Ce Huang(黄策), Enze Zhang(张恩泽), Xiang Yuan(袁翔), Weiyi Wang(王伟懿), Yanwen Liu(刘彦闻), Cheng Zhang(张成), Jiwei Ling(凌霁玮), Shanshan Liu(刘姗姗), Faxian Xiu(修发贤). Chin. Phys. B, 2017, 26(6): 067302.
[13] Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model
Yan Jing(闫静), Shan Lei(单磊), Wang Yue(王越), Xiao Zhi-Li(肖志力), and Wen Hai-Hu(闻海虎). Chin. Phys. B, 2008, 17(6): 2229-2235.
No Suggested Reading articles found!