Special Issue:
SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
|
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials |
Prev
Next
|
|
|
Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5 |
Bin Hu(胡彬)1, Yuhan Ye(耶郁晗)1, Zihao Huang(黄子豪)1, Xianghe Han(韩相和)1, Zhen Zhao(赵振)1, Haitao Yang(杨海涛)1,3, Hui Chen(陈辉)1,2,3,†, and Hong-Jun Gao(高鸿钧)1,2,3 |
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract V-based kagome materials AV3Sb5 (A=K, Rb, Cs) have attracted much attention due to their novel properties such as unconventional superconductivity, giant anomalous Hall effect, charge density wave (CDW) and pair density wave. Except for the 2a0×2a0 CDW (charge density wave with in-plane 2×2 superlattice modulation) in AV3Sb5, an additional 1×4 (4a0) unidirectional stripe order has been observed at the Sb surface of RbV3Sb5 and CsV3Sb5. However, the stability and electronic nature of the 4a0 stripe order remain controversial and unclear. Here, by using low-temperature scanning tunneling microscopy/spectroscopy (STM/S), we systematically study the 4a0 stripe order on the Sb-terminated surface of CsV3Sb5. We find that the 4a0 stripe order is visible in a large energy range. The STM images with positive and negative bias show contrast inversion, which is the hallmark for the Peierls-type CDW. In addition, below the critical temperature about 60 K, the 4a0 stripe order keeps unaffected against the topmost Cs atoms, point defects, step edges and magnetic field up to 8 T. Our results provide experimental evidences on the existence of unidirectional CDW in CsV3Sb5.
|
Received: 26 December 2021
Revised: 06 February 2022
Accepted manuscript online:
|
PACS:
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: This work was financially supported by the National Key Research and Development Project of China (Grant Nos.2018YFA0305800 and 2019YFA0308500),the National Natural Science Foundation of China (Grant Nos.61888102 and 52022105),the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB30000000 and XDB28000000),CAS Project for Young Scientists in Basic Research (Grant No.YSBR-003),and the University of Chinese Academy of Sciences. |
Corresponding Authors:
Hui Chen,hchenn04@iphy.ac.cn
E-mail: hchenn04@iphy.ac.cn
|
About author: 2022-2-25 |
Cite this article:
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧) Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 058102
|
[1] Guo H M and Franz M 2009 Phys. Rev. B 80 113102 [2] Mazin, II, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valenti R 2014 Nat. Commun. 5 4261 [3] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109 [4] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003 [5] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125 [6] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 [7] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 [8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [9] Yin J X, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443 [10] Xing Y, Shen J, Chen H, et al. 2020 Nat. Commun. 11 5613 [11] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [12] Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91 [13] Wang Q, Yin Q W and Lei H C 2020 Chin. Phys. B 29 17101 [14] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [15] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090 [16] Xu C Q, Heitmann T W, Zhang H, Xu X and Ke X 2021 Phys. Rev. B 104 024413 [17] Ma W, Xu X, Wang Z, Zhou H, Marshall M, Qu Z, Xie W and Jia S 2021 Phys. Rev. B 103 235109 [18] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [19] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [20] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [21] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [22] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [23] Yu F H, Wen X K, Gui Z G, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2022 Chin. Phys. B 31 17405 [24] Chen H, Yang H, Hu B, et al. 2021 Nature 599 222 [25] Yang H, Zhang Y, Huang Z, Zhao Z, Shi J, Qian G, Hu B, Lu Z, Zhang H, Shen C, Lin X, Wang Z, Pennycook S J, Chen H, Dong X, Zhou W and Gao H J 2021 arXiv:2110.11228 [26] Ni S, Ma S, Zhang Y, et al. 2021 Chin. Phys. Lett. 38 057403 [27] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 [28] Park T, Ye M and Balents L 2021 Phys. Rev. B 104 035142 [29] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601 [30] Zhou X, Li Y, Fan X, Hao J, Dai Y, Wang Z, Yao Y and Wen H H 2021 Phys. Rev. B 104 L041101 [31] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [32] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050 [33] Shumiya N, Hossain M S, Yin J X, et al. 2021 Phys. Rev. B 104 035131 [34] Wang Z, Jiang Y X, Yin J X, et al. 2021 Phys. Rev. B 104 075148 [35] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401 [36] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353 [37] Mu C, Yin Q, Tu Z, Gong C, Zheng P, Lei H, Li Z and Luo J 2022 Chin. Phys. B 31 17105 [38] Du F, Luo S, Li R, Ortiz B R, Chen Y, Wilson S D, Song Y and Yuan H 2022 Chin. Phys. B 31 17404 [39] Ratcliff N, Hallett L, Ortiz B R, Wilson S D and Harter J W 2021 Phys. Rev. Mater. 5 L111801 [40] Li H, Jiang Y X, Yin J X, Yoon S, Lupini A R, Pai Y, Nelson C, Said A, Yang Y M, Yin Q W, Gong C S, Tu Z J, Lei H C, Yan B, Wang Z, Hasan M Z, Lee H N and Miao H 2021 arXiv:2109.03418 [41] Mallet P, Zimmermann K M, Chevalier P, Marcus J, Veuillen J Y and Rodriguez J M G 1999 Phys. Rev. B 60 2122 [42] Dai J, Calleja E, Alldredge J, Zhu X, Li L, Lu W, Sun Y, Wolf T, Berger H and McElroy K 2014 Phys. Rev. B 89 165140 [43] Hall J, Ehlen N, Berges J, van Loon E, van Efferen C, Murray C, Rösner M, Li J, Senkovskiy B V, Hell M, Rolf M, Heider T, Asensio M C, Avila J, Plucinski L, Wehling T, Grüneis A and Michely T 2019 ACS Nano 13 10210 [44] Spera M, Scarfato A, Pásztor á, Giannini E, Bowler D R and Renner C 2020 Phys. Rev. Lett. 125 267603 [45] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384 [46] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y and Wen H H 2021 Nat. Commun. 12 6727 [47] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265 [48] Yu L, Wang C, Zhang Y, et al. 2021 arXiv:2107.10714 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|