Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096802    DOI: 10.1088/1674-1056/22/9/096802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Evolution behavior of catalytically activated replication–decline in a coagulation process

Gao Yan (高艳)a, Wang Hai-Feng (王海锋)a, Zhang Ji-Dong (张吉东)a, Yang Xia (杨霞)a, Sun Mao-Zhu (孙茂珠)a, Lin Zhen-Quan (林振权)b
a Key Laboratory of Ecophysics and Department of Physics, School of Science, Shihezi University, Shihezi 832003, China;
b Department of Physics, Wenzhou University, Wenzhou 325027, China
Abstract  We propose a catalytically activated replication-decline model of three species, in which two aggregates of the same species can coagulate themselves, an A aggregate of any size can replicate itself with the help of B aggregates, and the decline of A aggregate occurs under the catalysis of C aggregates. By means of mean-field rate equations, we derive the asymptotic solutions of the aggregate size distribution ak(t) of species A, which is found to depend strongly on the competition among three mechanisms: the self-coagulation of species A, the replication of species A catalyzed by species B, and the decline of species A catalyzed by species C. When the self-coagulation of species A dominates the system, the aggregate size distribution ak(t) satisfies the conventional scaling form. When the catalyzed replication process dominates the system, ak(t) takes the generalized scaling form. When the catalyzed decline process dominates the system, ak(t) approaches the modified scaling form.
Keywords:  aggregation      catalytically activated reaction      replication      decline  
Received:  30 December 2012      Revised:  01 March 2013      Accepted manuscript online: 
PACS:  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  82.20.-w (Chemical kinetics and dynamics)  
  89.75.Da (Systems obeying scaling laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875086 and 11145004).
Corresponding Authors:  Wang Hai-Feng     E-mail:  whfeng@shzu.edu.cn; hfwang11@126.com

Cite this article: 

Gao Yan (高艳), Wang Hai-Feng (王海锋), Zhang Ji-Dong (张吉东), Yang Xia (杨霞), Sun Mao-Zhu (孙茂珠), Lin Zhen-Quan (林振权) Evolution behavior of catalytically activated replication–decline in a coagulation process 2013 Chin. Phys. B 22 096802

[1] Stockmayer W H 1943 J. Chem. Phys. 11 45
[2] Flory P J 1953 Principles of Polymer Chemistry (Ithaca: Cornell University Press)
[3] Leyvraz F 2003 Phys. Rep. 383 95
[4] Ben-Naim E and Krapivsky P L 2005 J. Phys.: Condens. Matter 17 S4249
[5] Ben-Naim E and Krapivsky P L 2007 Phys. Rev. E 75 011103
[6] Ben-Naim E and Krapivsky P L 2008 Phys. Rev. E 77 061132
[7] Yu J and Hu G 1989 Phys. Rev. B 39 4659
[8] Yu J, Hu G and Ma B K 1990 Phys. Rev. B 41 9424
[9] Yang S Y, Zhu S Q and Ke J H 2009 Phys. Rev. E 80 031114
[10] Smoluchowski M V 1916 Phys. Z 17 557
[11] Leyvraz F and Redner S 2002 Phys. Rev. Lett. 88 068301
[12] Ke J H, Lin Z Q, Zheng Y Z, Chen X S and Lu W 2006 Phys. Rev. Lett. 97 028301
[13] Bond G C 1987 Heterogeneous Catalysis: Principles and Applications (Oxford: Clarendon)
[14] Oshanin G and Burlatsky S F 2002 J. Phys. A: Math. Theory 35 L695
[14] Benichou O, Coppey M, Moreau M and Oshanin G 2005 J. Chem. Phys. 123 194506
[16] Wu Y G, Lin Z Q and Ke J H 2012 Chin. Phys. B 21 068201
[17] Lin Z Q, Ke J H and Ye G X 2006 Phys. Rev. E 74 046113
[18] Wang H F, Lin Z Q and Ke J H 2007 Phys. Rev. E 75 046108
[19] Lipps H J 1980 Proc. Natl. Acad. Sci. USA 77 4104
[20] Cairns J 1962 Nature 194 1274
[21] Yang S Y, Zhu S Q Ke J H and Lin Z Q 2008 Commun. Theor. Phys. 50 787
[22] Hao X J, Wang S and Huang J F 2012 Journal of Shihezi University (Natural Science) 5 582
[23] Family F, Meakin P and Deutch J M 1986 Phys. Rev. Lett. 57 727
[24] Ke J H and Lin Z Q 2002 Phys. Rev. E 66 062101
[25] Ke J H, Zheng Y Z, Lin Z Q and Chen X S 2007 Phys. Lett. A 368 188
[26] Ziff R M, Ernst M H and Hendriks E M 1983 J. Phys. A: Math. Gen. 16 2293
[27] Ben-Naim E and Krapivsky P L 2003 Phys. Rev. E 68 031104
[28] Wang H F, Lin Z Q and Gao Y 2008 Chin. Phys. B 17 1490
[1] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[2] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[3] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[4] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[5] Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation
Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮). Chin. Phys. B, 2017, 26(11): 114401.
[6] Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates
Cheng Yi (程毅), Zhu Yu-Hong (祝宇红), Pan Qi-Fa (潘启发), Yang Bo (杨波), Tao Xiang-Ming (陶向明), Ye Gao-Xiang (叶高翔). Chin. Phys. B, 2015, 24(11): 118105.
[7] Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study
He Su-Zhen (何素贞), Merlitz Holger, Wu Chen-Xu (吴晨旭). Chin. Phys. B, 2014, 23(4): 048201.
[8] Evolution of nitrogen structure in N-doped diamond crystal after high pressure and high temperature annealing treatment
Zheng You-Jin (郑友进), Huang Guo-Feng (黄国锋), Li Zhan-Chang (李战厂), Zuo Gui-Hong (左桂鸿). Chin. Phys. B, 2014, 23(11): 118102.
[9] Bipolar resistive switching based on bis(8-hydroxyquinoline) cadmium complex:Mechanism and non-volatile memory application
Wang Ying (王颖), Yang Ting (杨汀), Xie Ji-Peng (谢吉鹏), Lü Wen-Li (吕文理), Fan Guo-Ying (范国莹), Liu Su (刘肃). Chin. Phys. B, 2013, 22(7): 077308.
[10] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang . Chin. Phys. B, 2012, 21(5): 054702.
[11] Influence of annealing treatment on as-grown Ib-type diamond crystal at a high temperature and high pressure
Huang Guo-Feng (黄国锋), Yin Ji-Wen (尹辑文), Bai Hong-Bo (白洪波), HuYi-Ga (胡义嘎), Kai Li (凯丽), Jing Jing (静婧), Ma Hong-An (马红安), Jia Xiao-Peng (贾晓鹏). Chin. Phys. B, 2012, 21(10): 108102.
[12] Kinetics of catalytically activated aggregation–fragmentation process
Gao Yan(高艳), Wang Hai-Feng(王海锋), Lin Zhen-Quan(林振权), and Xue Xin-Ying(薛新英). Chin. Phys. B, 2011, 20(8): 086801.
[13] Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field
Li Chao-Rong(李超荣), Li Shu-Wen(李书文), Mei Jie(梅洁), Xu Qing(徐庆), Zheng Ying-Ying(郑莹莹), and Dong Wen-Jun(董文钧) . Chin. Phys. B, 2011, 20(7): 078102.
[14] Effect of secondary radiation force on aggregation between encapsulated microbubbles
Zhang Yan-Li(张艳丽), Zheng Hai-Rong(郑海荣), Tang Meng-Xing(汤孟兴), and Zhang Dong(章东) . Chin. Phys. B, 2011, 20(11): 114302.
[15] Electric dipolar interaction assisted growth of single crystalline organic thin films
Cai Jin-Ming(蔡金明), Zhang Yu-Yang(张余洋), Hu Hao(胡昊), Bao Li-Hong(鲍丽宏), Pan Li-Da(潘理达), Tang Wei(唐卫), Li Guo(李果), Du Shi-Xuan(杜世萱), Shen Jian(沈健), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(6): 067101.
No Suggested Reading articles found!