Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097502    DOI: 10.1088/1674-1056/21/9/097502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electron-mediated ferromagnetism in Fe-doped InP: Theory and experiment

Dong Shan (董珊), Zhu Feng (朱峰)
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations and experiments. Theoretically, based on spin-polarized density functional theory within Heyd-Scuseria-Ernzerhof (HSE03) approach, we systematically investigate the magnetic properties of Fe-doped InP and predict the existence of electron-mediated ferromagnetism. Experimentally, by diffusing Fe into the n-type InP wafer with thermal annealing at 800 ℃, we observe room-temperature ferromagnetism in InP:Fe, which is in agreement with the theoretical prediction.
Keywords:  ferromagnetism      Fe-doped InP      first-principles calculations  
Received:  13 January 2012      Revised:  11 March 2012      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.55.-i (Impurity and defect levels)  
  71.70.-d (Level splitting and interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60925016).
Corresponding Authors:  Dong Shan     E-mail:  dongshan08@semi.ac.cn

Cite this article: 

Dong Shan (董珊), Zhu Feng (朱峰) Electron-mediated ferromagnetism in Fe-doped InP: Theory and experiment 2012 Chin. Phys. B 21 097502

[1] Ohno H 1998 Science 281 951
[2] Awschalom D D and Kawakami R K 2000 Nature 408 923
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[4] Linnarsson M, Janzn E, Monemar B, Kleverman M and Thilderkvist A 1997 Phys. Rev. B 55 6938
[5] Fukumura T, Jin Z, Ohtomo A, Koinuma H and Kawasaki M 1999 Appl. Phys. Lett. 75 3366
[6] Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, and Koinuma H 2001 Appl. Phys. Lett. 78 3824
[7] Peng H, Li J, Li S S and Xia J B 2009 Phys. Rev. B 79 092411
[8] Deng H X, Li J, Li S S, Xia J B, Walsh A and Wei S H 2010 Appl. Phys. Lett. 96 162508
[9] Wei S H, Gong X G, Dalpian G M and Wei S H 2005 Phys. Rev. B 71 144409
[10] Dalpian G M, Wei S H, Gong X G, da Silva A J R and Fazzio A 2006 Solid State Commun. 138 353
[11] Peng H, Xiang H J, Wei S H, Li S S, Xia J B and Li J 2009 Phys. Rev. Lett. 102 017201
[12] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[13] Sanvito S, Ordejon P and Hill N A 2001 Phys. Rev. B 63 165206
[14] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[15] Meng X Q, Tang L M and Li J 2010 J. Phys. Chem. C 114 17596
[16] Walsh A, Da Silva J L F and Wei S H 2008 Phys. Rev. Lett. 100 256401
[17] Wieder H H 1985 J. Vac. Sci. Technol. 15 1498
[18] Petrov M P, Bryksin V V, Hilling B, Lemmer M and Imlau M 2008 Phys. Rev. B 78 085121
[19] Zhu H J, Kostial H, Wassermeier M, Schonherr H P and Ploog K H 2001 Phys. Rev. Lett. 87 016601
[20] Feng Q J, Shen D Z, Zhang J Y, Li B H, Zhang Z Z, Lu Y M and Fan X W 2008 Mater. Chem. Phys. 112 1106
[21] Twardowski A, Swagten H J M and Jonge W J M 1991 Phys. Rev. B 44 2220
[22] Hohenberg P and Kohn W 1994 Phys. Rev. B 136 864
[23] Perdew J P and Wang Y 1986 Phys. Rev. B 33 8800
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[26] Heyd J and Scuseria G E 2004 J. Chem. Phys. 120 7274
[27] Heyd J, Peralta J E, Scuseria G E and Martin R L 2005 J. Chem. Phys. 123 174101
[28] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Angyan J G 2006 J Chem. Phys. 124 154709
[29] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31] Madelung O 2004 Semiconductors: Data Handbook (Berlin: Springer)
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[14] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[15] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
No Suggested Reading articles found!