Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057501    DOI: 10.1088/1674-1056/ac5987
RAPID COMMUNICATION Prev   Next  

Dynamical signatures of the one-dimensional deconfined quantum critical point

Ning Xi(西宁) and Rong Yu(俞榕)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points (DQCPs) in an S = 1/2 spin chain using the time evolution of infinite matrix product states. The scaling of the correlation functions and the dispersion of the conserved current correlations explicitly show the emergence of enhanced continuous symmetries at these DQCPs. The dynamical structure factors in several different channels reveal the development of deconfined fractionalized excitations at the DQCPs. Furthermore, we find an effective spin-charge separation at the DQCP between the ferromagnetic (FM) and valence bond solid (VBS) phases, and identify two continua associated with different types of fractionalized excitations at the DQCP between the X-direction and Z-direction FM phases. Our findings not only provide direct evidence for the DQCP in one dimension but also shed light on exploring the DQCP in higher dimensions.
Keywords:  one-dimensional antiferromagnetism      spin frustration      deconfined quantum critical point      spin dynamics      infinite time-evolving block decimation  
Received:  29 December 2021      Revised:  26 February 2022      Accepted manuscript online: 
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.40.Gb (Dynamic properties?)  
Fund: Project supported by the National Science Foundation of China (Grant No.12174441),the Fundamental Research Funds for the Central Universities,China,and the Research Funds of Remnin University of China (Grant No.18XNLG24).
Corresponding Authors:  Rong Yu,E-mail:rong.yu@ruc.edu.cn     E-mail:  rong.yu@ruc.edu.cn
About author:  2022-3-2

Cite this article: 

Ning Xi(西宁) and Rong Yu(俞榕) Dynamical signatures of the one-dimensional deconfined quantum critical point 2022 Chin. Phys. B 31 057501

[1] Chaikin P M and Lubensky T C 1995 Principles of condensed matter physics (Cambridge: Cambridge University Press)
[2] Giamarchi T 2004 Quantum Physics in One Dimension (Oxford: Oxford Univ. Press)
[3] Diep H T 2004 Frustrated spin systems (Beijing: World Scientific)
[4] Lacroix C, Mendels P and Mila F 2013 Introduction to Frustrated Magnetism Materials, Experiments, Theory (Berlin: Springer Berlin)
[5] Sachdev S 2011 Quantum Phase Transition (Cambridge: Cambridge University Press)
[6] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
[7] Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2004 Phys. Rev. B 70 144407
[8] Sandvik A W 2007 Phys. Rev. Lett. 98 227202
[9] Chen K, Huang Y, Deng Y, Kuklov A B, Prokof’ev N V and Svistunov B V 2013 Phys. Rev. Lett. 110 185701
[10] Nahum A, Serna P, Chalker J T, Ortuno M and Somoza A M 2015 Phys. Rev. Lett. 115 267203
[11] Shao H, Guo W and Sandvik A W 2016 Science 352 213
[12] Qin Y Q, He Y Y, You Y Z, Lu Z Y, Sen A, Sandvik A W, Xu C and Meng Z Y 2017 Phys. Rev. X 7 031052
[13] Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421
[14] Ma N, You Y Z and Meng Z Y 2019 Phys. Rev. Lett. 122 175701
[15] Lee J Y, You Y Z, Sachdev S and Vishwanath A. 2019 Phys. Rev. X 9 041037
[16] Xi N, Chen H, Xie Z Y and Yu R 2021 arXiv: 2111.07368
[17] Zhao B, Takahashi J and Sandvik A W 2020 Chin. Phys. B 29 57506
[18] Sun G, Ma N, Zhao B, Sandvik A W and Meng Z Y 2021 Chin. Phys. B 30 067505
[19] Cui Y, Liu L, Lin H, Wu K-H, Hong W, Liu X, Li C, Hu Z, Xi N, Li S, Yu R, Sandvik A W and Yu W 2022 arXiv:2204.08133
[20] Huang R Z, Lu D C, You Y Z, Meng Z Y and Xiang T 2019 Phys. Rev. B 100 125137
[21] Huang R Z and Yin S 2020 Phys. Rev. Research 2 023175
[22] Affleck I and Haldane F D M 1987 Phys. Rev. B 36 5291
[23] Patil P, Katz E and Sandvik A W 2018 Phys. Rev. B 98 014414
[24] Mudry C, Furusaki A, Morimoto T and Hikihara T 2019 Phys. Rev. B 99 205153
[25] Roberts B, Jiang S and Motrunich O I 2019 Phys. Rev. B 99 165143
[26] Jiang S and Motrunich O I 2019 Phys. Rev. B 99 075103
[27] Yang S, Yao D X and Sandvik A W 2020 arXiv: 2001.02821
[28] Roberts B, Jiang S and Motrunich O I 2021 Phys. Rev. B 103 155143
[29] Yang S and Xu J B 2021 Phys. Rev. E 104 064121
[30] Furukawa S, Sato M, Onoda S and Furusaki A 2012 Phys. Rev. B 86 094417
[31] Luo Q, Zhao J and Wang X 2019 Phys. Rev. B 100 121111
[32] Sun G, Wei B B and Kou S P 2019 Phys. Rev. B 100 064427
[33] White S R 1992 Phys. Rev. Lett. 69 2863
[34] Delft J V and Schoeller H 1998 Annalen der Physik 7 225
[35] Fradkin E 2013 Field theories of condensed matter systems (Cambridge: Cambridge University Press)
[36] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[37] Nomura K, Morishige J and Isoyama T 2015 J. Phys. A 48 375001
[38] Isoyama T and Nomura K 2017 Prog. Theoret. Experiment. Phys. 2017 103I01
[39] Vidal G 2007 Phys. Rev. Lett. 98 070201
[40] Schollwöck U 2011 Ann. Phys. 326 96
[41] Tagliacozzo L, Oliveira T R, Iblisdir S and Latorre J I 2008 Phys. Rev. B 78 024410
[42] Pollmann F, Mukerjee S, Turner A M and Moore J E 2009 Phys. Rev. Lett. 102 255701
[43] Pirvu B, Vidal G, Verstraete F and Tagliacozzo L 2012 Phys. Rev. B 86 075117
[44] White S R and Affleck I 2008 Phys. Rev. B 77 134437
[45] Latorre J I and Riera A 2009 J. Phys. A 42 504002
[46] For a system with open boundary conditions, the scaling of the entanglement entropy reads $s\sim\frac{c}{6}\log(\xi)$, where c is the central charge.
[47] Xi N and Yu R 2022 arXiv: 2202.12543
[1] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[2] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[3] Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice
Shaobing Zhu(朱少兵), Jun Qian(钱军), Yuzhu Wang(王育竹). Chin. Phys. B, 2017, 26(4): 046702.
[4] Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization
Dongna Yuan(苑冬娜), Yulong Huang(黄裕龙), Shunli Ni(倪顺利), Huaxue Zhou(周花雪), Yiyuan Mao(毛义元), Wei Hu(胡卫), Jie Yuan(袁洁), Kui Jin(金魁), Guangming Zhang(张广铭), Xiaoli Dong(董晓莉), Fang Zhou(周放). Chin. Phys. B, 2016, 25(7): 077404.
[5] Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures
Cheng Zhao-Hua (成昭华), He Wei (何为), Zhang Xiang-Qun (张向群), Sun Da-Li (孙达力), Du Hai-Feng (杜海峰), Wu Qiong (吴琼), Ye Jun (叶军), Fang Ya-Peng (房亚鹏), Liu Hao-Liang (刘郝亮). Chin. Phys. B, 2015, 24(7): 077505.
[6] Coherent spin dynamics in spin-imbalanced ferromagnetic spinor condensates
Qiu Hai-Bo (邱海波), Wu Li-Wei (武丽伟). Chin. Phys. B, 2015, 24(1): 010304.
[7] Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO2 using first principles
Jiang Xue-Fan(江学范), Liu Xian-Feng(刘先锋), Wu Yin-Zhong(吴银忠), and Han Jiu-Rong(韩玖荣) . Chin. Phys. B, 2012, 21(7): 077502.
No Suggested Reading articles found!