CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of misfit strain on the electrocaloric effect of polydomain epitaxial ferroelectric thin films |
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴) |
Center for Low-dimensional Materials, Micro-nano Devices and System, Changzhou University, Changzhou 213164, China |
|
|
Abstract The effect of misfit strain on the electrocaloric effect in polydomain epitaxial BaTiO3 thin films at room temperature is investigated using the Ginzburg-Landau-Devonshire thermodynamic theory. Numerical calculations indicate that the misfit strain has a large impact on the ferroelectric polarization states and the electrocaloric effect. Most importantly, the electrocaloric effect in the polydomain ca1/ca2/ca1/ca2 phase is much larger than that in the monodomain c phase and the other polydomain phases. Consequently, a large electrocaloric effect can be obtained by carefully controlling the misfit strain, which may provide potential applications in refrigeration devices.
|
Received: 15 March 2012
Revised: 09 April 2012
Accepted manuscript online:
|
PACS:
|
77.22.Ej
|
(Polarization and depolarization)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
77.80.bn
|
(Strain and interface effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904053), the Jiangsu Provincial Natural Science Foundation for Colleges and Universities, China (Grant No. 09KJB140002), and the Priority Academic Development Program of Jiangsu Higher Education Institutions and Qing Lan Project, China. |
Corresponding Authors:
Ding Jian-Ning
E-mail: dingjn@cczu.edu.cn
|
Cite this article:
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴) Effect of misfit strain on the electrocaloric effect of polydomain epitaxial ferroelectric thin films 2012 Chin. Phys. B 21 097701
|
[1] |
Lee N H, Nakhmanson S M, Chisholm M F, Christen H M, Rabe K M and Vanderbilt D 2007 Phys. Rev. Lett. 98 217602
|
[2] |
Ederer C and Spaldin N A 2005 Phys. Rev. Lett. 95 257601
|
[3] |
Alldredge L M B, Chang C, Kirchoefer S W and Pond J M 2009 Appl. Phys. Lett. 95 222902
|
[4] |
Pertsev N A and Dkhil B 2008 Appl. Phys. Lett. 93 122903
|
[5] |
Shirokov V B, Yuzyuk Y I, Dkhil B and Lemanov V V 2007 Phys. Rev. B 75 224116
|
[6] |
Neese B, Chu B J, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
|
[7] |
Valant M, Dunne L J, Axelsson A K, Alford N M, Manos G, Perantie J, Hagberg J, Jantunen H and Dabkowski A 2010 Phys. Rev. B 81 214110
|
[8] |
Lisenkov S and Ponomareva I 2009 Phys. Rev. B 80 140102(R)
|
[9] |
Prosandeev S, Ponomareva I and Bellaiche L 2008 Phys. Rev. B 78 052103
|
[10] |
Mischenko A S, Zhang Q, Whatmore R W, Scott J F and Mathur N D 2006 Appl. Phys. Lett. 89 242912
|
[11] |
Correia T M, Young J S, Whatmore R W, Scott J F, Mathur N D and Zhang Q 2009 Appl. Phys. Lett. 95 182904
|
[12] |
Bai Y, Zheng G P and Shi S Q 2010 Appl. Phys. Lett. 96 192902
|
[13] |
Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
|
[14] |
Akcay G, Alpay S P, Mantese J V and Rossetti G A 2007 Appl. Phys. Lett. 90 252909
|
[15] |
Akcay G, Alpay S P, Rossetti G A and Scott J F 2008 J. Appl. Phys. 103 024104
|
[16] |
Qiu J H and Jiang Q 2008 J. Appl. Phys. 103 084105
|
[17] |
Qiu J H and Jiang Q 2009 Eur. Phys. J. B 71 15
|
[18] |
Zhang X, Wang J B, Li B, Zhong X L, Lou X J and Zhou Y C 2011 J. Appl. Phys. 109 126102
|
[19] |
Vlooswijk A H G, Noheda B, Catalan G, Janssens A, Barcones B, Rijnders G, Blank D H A, Venkatesan S, Kooi B and de Hosson J T M 2007 Appl. Phys. Lett. 91 112901
|
[20] |
Qiu Q Y, Alpay S P and Nagarajan V 2010 J. Appl. Phys. 107 114105
|
[21] |
Speck J S, Seifert A, Pompe W and Ramesh R 1994 J. Appl. Phys. 76 477
|
[22] |
Alpay S P, Nagarajan V, Bendersky L A, Vaudin M D, Aggarwal S, Ramesh R and Roytburd A L 1999 J. Appl. Phys. 85 3271
|
[23] |
Ganpule C S, Nagarajan V, Hill B K, Roytburd A L, Williams E D, Ramesh R, Alpay S P, Roelofs A, Waser R and Eng L M 2002 J. Appl. Phys. 91 1477
|
[24] |
Karthik J and Martin L W 2011 Appl. Phys. Lett. 99 032904
|
[25] |
Kukhar V G, Pertsev N A, Kohlstedt H and Waser R 2006 Phys. Rev. B 73 214103
|
[26] |
Pertsev N A and Koukhar V G 2000 Phys. Rev. Lett. 84 3722
|
[27] |
Koukhar V G, Pertsev N A and Waser R 2001 Phys. Rev. B 64 214103
|
[28] |
Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988
|
[29] |
Qiu J H and Jiang Q 2008 Phys. Lett. A 372 7191
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|