Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097501    DOI: 10.1088/1674-1056/21/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations

M. Bhihia, M. Lakhala, H. Labrimb, A. Benyoussefa c d, A. El Kenza, O. Mounkachic, E. K. Hlile
a Laboratoire de Magnétisme et de Physique des Hautes Energies, associé au CNRST (URAC 12), Département de Physique, B.P. 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco;
b National Centre for Energy, Sciences and Nuclear Techniques CNESTEN, Morocco;
c Institute of Nanomaterials and Nanotechnologies, MACsIR, Rabat, Morocco;
d Hassan II Academy of Science and Technology, Rabat, Morocco;
e Institut Néel, CNRS-UJF, 38042 Grenoble Cedex 9, France
Abstract  In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg1-xMxH2 (M=Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa-Kohn-Rostoker (KKR) calculation with the coherent potential approximation (CPA) approximation. In particular, the nature and the concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities.
Keywords:  first-principles calculation      formation energy      electronic structure      hydrogen storage  
Received:  16 January 2012      Revised:  13 April 2012      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
Corresponding Authors:  A. El Kenz     E-mail:  elkenz@fsr.ac.ma

Cite this article: 

M. Bhihi, M. Lakhal, H. Labrim, A. Benyoussef, A. El Kenz, O. Mounkachi, E. K. Hlil Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations 2012 Chin. Phys. B 21 097501

[1] Cabo M, Garrroni S, Pellicer E, Milanese C, Girella A, Marini A, Rossinyol E, Surinach S and Dolors Baro M 2011 International Journal of Hydrogen Energy 36 5400
[2] Kurko S, Matovic L, Novakovic N, Matovic B, Jovanovic Z, Paskas Mamula B and Novakovic J 2011 International Journal of Hydrogen Energy 36 1184
[3] Liang G, Huot J, Boily S, Van Neste A and Schulz R 1999 J. Alloys Comp. 292 247
[4] Rivoirard S, de Rango P, Fruchart D, Charbonnier J and Vempaire D 2003 J. Alloys Comp. 622 356
[5] Charbonnier J, De Rango P, Fruchart D, Miraglia S, Pontonnier L, Rivoirard S, Skryabina N and Vulliet P 2004 J. Alloys Comp. 383 205
[6] Shang X, Bououdina M, Song Y and Guo Z X 2004 International Journal of Hydrogen Energy 29 73
[7] Song M Y, Bobet J L and Darriet B 2002 J. Alloys Comp. 340 256
[8] Spassov T, Rangelova V, Solsona P, BaróM D, Zander D and Köster U 2005 J. Alloys Comp. 398 139
[9] Shao H, Asano K, Enoki H and Akiba E 2009 J. Alloys Comp. 477 301
[10] Xiao X B, Zhang W B, Yu W Y, Wang N and Tang B Y 2009 Physica B 404 2234
[11] Gremaud R, Broedersz C P, Borsa D M, Schreuders H, Rector J H, B Dam B and Griessen R 2007 Adv. Mater. 19 2813
[12] Araújo C M and Ahuja R 2005 J. Alloys Comp. 404 220
[13] Hou Z F 2006 Journal of Power Sources 159 111
[14] Bouhadda Y, Rabehi A and Bezzari-Tahar-Chaouche S 2007 Revue des Energies Renouvelables 10 545
[15] Alapati S V, Johnson J K and Sholl D S 2007 J. Alloys Comp. 446 23
[16] Velikokhatnyi O I and Kumta P N 2007 Materials Science and Engineering B 140 114
[17] Akai H 1989 J. Phys.: Condens. Matter 1 8045
[18] Akai H 2002 MACHIKANEYAMA2002v08
[19] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[20] Friedlmeier G M and Bolcich J C 1988 International Journal of Hydrogen Energy 13 467
[21] Klose W and Stuke V 1995 International Journal of Hydrogen Energy 20 309
[22] Vajeeston P, Ravindran P, Kjekshus A and Fjellvabg H 2002 Phys. Rev. Lett. 89 175506
[23] Bortz M, Bertheville B, Bottger G and Yvon K 1999 J. Alloys Comp. 287 L4
[24] Kittel C 1986 Introduction to Solid State Physics (New York: Wiley)
[25] Fenman R P 1939 Phys. Rev. 56 340
[26] Moriwaki T, Akahama Y and Kawamura H 2006 J. Phys. Soc. Jpn. 75 074603
[27] Nakamura H, Nguyen-Manh D and Pettifor D G 1998 J. Alloys Comp. 281 81
[28] Novaković N, Novaković J G, Matović L, Manasijević M, Radisavljević I, Mamula B P and Ivanović N 2010 International Journal of Hydrogen Energy 35 598
[29] Friedlmeier G M and Bolcich J C 1988 International Journal of Hydrogen Energy 13 467
[30] Klose W and Stuke V 1995 International Journal of Hydrogen Energy 20 309
[31] Gremaud R, Broedersz C P, Borsa D M, Schreuders I H, Rector I J H and Dam B 2007 Adv. Mater. 19 2813
[32] Zeng Q, Su K, Zhang L, Xu Y, Cheng L and Yan X 2006 J. Phys. Chem. 35 1385
[33] Alapati S V, Johnson J K and Sholl D S 2006 J. Phys. Chem. B 110 8769
[34] Vajeeston P, Ravindran P, Hauback B C, Fjellvag H, Kjekshus A, Furuseth S and Hanfland M 2006 Phys. Rev. B 73 224102
[35] Yu R and Lam P K 1988 Phys. Rev. B 37 8730
[36] Westerwaal R, Broedersz C, Gremaud R, Slaman M, Borgschulte A, Lohstroh W, Tschersich K, Fleischhauer H, Dam B and Griessen R 2008 Thin Solid Films 516 4351
[37] Cotton F A 1963 Chemical Applications of Group Theory (New York: Interscience)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[13] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!